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Novel phases and reentrant melting of two-dimensional colloidal crystals
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We investigate two-dimensional~2D! melting in the presence of a one-dimensional~1D! periodic potential
as, for example, realized in recent experiments on 2D colloids subjected to two interfering laser beams. The
topology of the phase diagram is found to depend primarily on two factors: the relative orientation of the 2D
crystal and the periodic potential troughs, which selects a set of Bragg planes running parallel to the troughs,
and the commensurability ratiop5a8/d of the spacinga8 between these Bragg planes to the periodd of the
periodic potential. The complexity of the phase diagram increases with the magnitude of the commensurabilty
ratio p. Rich phase diagrams, with ‘‘modulated liquid,’’ ‘‘floating,’’ and ‘‘locked floating’’ solid and smectic
phases are found. Phase transitions between these phases fall into two broad universality classes, roughening
and melting, driven by the proliferation of discommensuration walls and dislocations, respectively. We discuss
correlation functions and the static structure factor in these phases, and make detailed predictions about the
universal features close to the phase boundaries. We predict that for charged systems with highly screened
short-range interactions, these melting transitions are generically reentrant as a function of the strength of the
periodic potential, a prediction that is in accord with recent 2D colloid experiments. Implications of our results
for future experiments are also discussed.

DOI: 10.1103/PhysRevE.63.031503 PACS number~s!: 68.35.Rh, 82.70.Dd, 61.72.Lk, 64.70.Dv
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I. INTRODUCTION

A. Motivation and background

Two-dimensional~2D! melting and mathematically re
lated systems, such as, for example normal-to-superfluid
planar paramagnet-to-ferromagnet transitions in films~de-
scribed by the 2DXY model! are striking examples of the
increased importance of thermal fluctuations in lo
dimensional systems@1,2#. In contrast to their bulk, three
~and higher-! dimensional analogs, where, typically, fluctu
tions lead only toquantitativemodifications of mean-field
predictions~e.g., change values of critical exponents!, here
the effects arequalitativeand drastic. Located exactly at th
lower-critical dimension (dlc52), below which the distinc-
tion between the high and low temperature phases is er
by fluctuations, two-dimensional melting can proceed via
subtle, two-stage,continuoustransition, driven by an unbind
ing of topological defects~dislocations and disclinations!.
This mechanism, made possible by strong thermal fluc
tions, therefore provides an alternative route to a direct fi
order melting, argued by Landau’s mean-field analysis@3# to
be theexclusivescenario.

Despite its long history, dating back to the work of K
sterlitz and Thouless@4#, Halperin and Nelson@5#, and
Young @6# ~KTHNY ! ~which in turn built on a large body o
ideas dating back to Landau and Peierls@7#!, interest in 2D
melting and related problems persists. On the theoretical
this is due, in part, to the fact that the theory of 2D melti
is an unusual example of a nontrivial and quite exotic criti
point that lends itself to an asymptoticallyexactdescription.
Furthermore, the KTHNY class of transitions~2D melting
and related disordering of a 2DXY model! provides a rare
example of thermodynamically sharp phase transitions
tween phases, both of which lack long-range order@8#.
1063-651X/2001/63~3!/031503~34!/$15.00 63 0315
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Although evidence of defect driven phase transitions
peared in numerous experiments on liquid crystals@9# and
Langmuir-Blodgett films@10#, finding simple model system
which exhibit these phenomena in experiments or simu
tions has proven to be more controversial. Some system
rameters appear to fall into the range in which it is disco
tinuous melting that converts a solid directly into a liqui
However, it appears that two-stage continuous melting w
recently experimentally observed by Murrayet al. @11# and
Zahn et al. @12# in beautiful melting experiments on two
dimensional colloids confined between smooth glass pla
and superparamagnetic colloidal systems, respectively
these experiments, an orientationally quasi-long-range
dered but translationally disordered hexatic phase@5# was
observed. This phase, intermediate but thermodynamic
distinct from the 2D solid and isotropic liquid, is an impo
tant signature of defect driven two-stage melting. In the
two-dimensional colloids, particle positions and the asso
ated topological defects can be directly imaged via dig
video microscopy, allowing precise quantitative tests of
theory. Colloids are thus ideal experimental model syste
to explore the details of two-dimensional melting and rela
phenomena, many of which are the focus of the theory p
sented here@13#.

Soon after the initial development of the theory of tw
dimensional melting, theoretical efforts turned toward stu
ies of the effects of a substrate, an important ingredien
many physical systems. These studies@14,15# uncovered a
rich phenomenology stemming from the interplay betwe
the underlying periodic substrate and a quasi-long-range
dered solid film interacting with it. While many experimen
have been undertaken, with a krypton film on a graph
substrate~see, e.g., Ref.@15# for a review! being one of the
best studied, these systems are far from ideal in explo
this rich phenomenology, because of the lack of subst
©2001 The American Physical Society03-1
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tunability; in these systems it is difficult to change the su
strate period, dimensionality, and pinning strength.

A series of pioneering experiments by Chowdhury, Ac
erson, and Clark@16# constituted an important new develo
ment. In these studies strongly interacting colloidal partic
confined to two dimensions, were subjected to a o
dimensional periodic potential, induced by the interferen
fringes from two laser beams crossed in the sample.
light-induced polarization in these micron-size dielectric p
ticles interacts with the laser electric field, leading to a rad
tion pressure force@17# directed toward the regions of hig
laser intensity, the antinodes’ maxima in the laser stand
wave pattern.

One of many interesting phenomena discovered
Chowdhuryet al. is the fixed-temperature freezing transitio
driven by increasing the strength of the laser potent
dubbed ‘‘light induced freezing’’~LIF!. Qualitatively, LIF is
due to the suppression of thermal fluctuations of the collo
particles transverse to the imposed periodic pinning laser
tential. This intuition is also supported by a more quanti
tive analysis based on Landau’s free energy expansion in
translational order parameters~density Fourier modes! rGi

,

with the$Gi% ’s the three smallest reciprocal lattice vectors
a triangular lattice. In the simplest geometry, with e.g.,G1
commensurate with the laser potential,^rG1

& is trivially in-
duced by the potential even in the liquid phase. Such a fi
^rG1

& then converts Landau’s cubic couplingrG1
rG2

rG3
,

~which, in mean-field theory, is responsible for melting
ways being first order! into a simple upward shift in the
melting temperature for the only remaining critical modec
[rG2

2rG3
. Not surprisingly, the resulting Landau expa

sion contains only even powers of this complex order para
eter c, which therefore generically orders via acontinuous
transition in theXY universality class. Hence, within th
mean-field description discussed by Chowdhuryet al. @16#,
one expects to reach a tricritical point upon increasing
light intensity, beyond which the LIF transition becom
continuous.

However, because of the dominant role of thermal flu
tuations in two-dimensional systems, such ‘‘soft-spin’’ La
dau expansions in order parameter amplitudes~and the re-
lated density functional theories@18#! will have difficulties in
capturing the subtleties of the continuous topological ph
transitions possible in these two-dimensional systems.
fortunately, results from Monte Carlo simulations are inco
clusive. Although earlier simulations@19# claimed to have
found a tricritical point at intermediate laser intensities, co
sistent with density functional theory, recent studies from
same laboratory@20# refuted these results. These difficultie
are perhaps unsurprising, given that even much larger s
simulations have, so far, failed to completely resolve
nature of 2D melting, evenwithout a periodic external po-
tential @21#.

An alternative ~but complementary and in principl
equivalent! ‘‘hard-spin’’ defect description~with order pa-
rameter amplitude fluctuations represented by defect co!,
extended to include a one-dimensional periodic pinning
tential may be necessary to correctly capture the rich p
03150
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nomenology of the early experiments by Chowdhuryet al.
@16# and recent ones by Weiet al. @22# and others@23#. De-
veloping such a theoretical framework and exploring its d
tails to interpret these experiments is the goal of the w
presented here.

Our interest in this problem was stimulated by the expe
ments of Weiet al. @22#, which extended the light-induce
melting experiments to higher laser intensities than th
studied in Ref.@16#. One other notable difference is that
contrast to the strong long-range interaction of unscree
charged colloids in highly deionized solution@16#, in Wei
et al.’s experiments colloidal particles were interacting via
short-ranged Debye potential, with ions in the soluti
screening the long-ranged Coulomb interaction. In addit
to the light-induced freezing, observed at low light inten
ties, the authors of Ref.@22# discovered areentrantmelting
phenomenon, ‘‘light-induced melting’’~LIM !, driven by the
increased strength of the laser-induced one-dimensional
riodic potential. As discussed below, this fascinating re
trance phenomenongenericallyemerges from our theoretica
analysis in the limit of a short Debye screening length.

The goal of this paper is to investigate two-dimension
melting in the presence of a one-dimensional periodic pot
tial, and to answer many basic questions stimulated by th
recent experiments. What is the nature of such melting tr
sition, if not preempted~as it can always be! by the first-
order transition? More generally, how is the standard ph
diagram for 2D melting on a homogeneous substrate~which
includes the 2D crystal, hexatic and liquid phases! modified
by the periodic laser potential? Which of the phases surv
the light field and what new ones emerge in its presen
The answers to these and many other questions, prov
below, lead to results consistent with experimental obser
tions, and have many testable consequences for possibl
ture experiments.

B. Summary of the results

Even in a liquid phase at high temperatures laser inter
ence fringes, which we choose to run along thex axis, induce
a periodic density modulation in the colloidal liquid. As
consequence the static structure functionS(q) displays
Bragg peaks atKn[n(2p/d) ŷ, the integer multiples (n
PZ) of the reciprocal lattice vectorK5(2p/d) ŷ of the im-
posed one-dimensional periodic potential with a trough sp
ing d @24#. The liquid phase density exhibits afinite linear
response to such a periodic perturbation with amplitudeUK ,
which is proportional to the input laser intensityI in . This is
consistent with the observations of Chowdhuryet al. @16#,
who found the scattered laser intensityI out, at these directly
induced Bragg peaks, to scale as a cube of the input l
power I in @25#. These explicitly induced features of th
modulated liquid persist throughout the phase diagram, w
the additional structure emerging as a result of numer
spontaneoussymmetry breakings, which we discuss below

The laser-induced periodic potential alsoexplicitly breaks
continuous 2D rotational symmetry down toZ2 symmetry
~rotations byp). Consequently, the one-dimensional pe
odic potential induces nematic, square, hexatic, and hig
orientational harmonics long-range orders, respectiv
3-2
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NOVEL PHASES AND REENTRANT MELTING . . . PHYSICAL REVIEW E63 031503
characterized by a 2n-atic bond orientational order param
eterc2n5^ei2nu(r )&, which, independent of any other detail
are nonzero throughout the phase diagram. Therefore, in
ticular, the laser potential eliminates the continuous tran
tion from an isotropic liquid phase to a hexatic liquid pha
expected in two-dimensional liquids in the absence of
external potential@5#. This situation is analogous to a ferro
magnet in a magnetic field, where the qualitative distinct
between paramagnetic and ferromagnetic phases is eras
the external magnetic field, with both phases displayin
finite induced magnetization.

Since the hexatic orientational order isexplicitly induced
by the laser potential, it must vanish as the laser field is tu
to zero. Analogously to a power-law vanishing of the ma
netization with an external magnetic field in a ferromagne
its critical point, we predict that at low input light intensitie
I in , the orientational order parameter, vanishes as auniversal
power of I in ,

c6;I
in

1/dc6 , ~1.1!

with 1/dc6
56 @26# in the liquid phase and

1/dc6
5

6h̄6

42h̄6

~1.2!

in the hexatic phase, whereh̄6 is the exponent describing th
algebraic decay of bond orientational order in the absenc
the laser-induced periodic potential@5#. We expectc6 to
approach a nonzeroI in-independent constant in the sol
phase, consistent with thespontaneouslong-range hexatic
order of the 2D crystal, even in the absence of a perio
potential.

All other details of the phase diagram and the proper
of the phases for our system depend strongly on the leve
commensurability between the two-dimensional colloid
crystal, in the absence of the laser field, and the o
dimensional periodic potential that it induces. This in turn
determined by two ingredients:~i! the orientation of the tri-
angular colloidal lattice relative to that of the periodic pote
tial troughs, which selects a set of Bragg planes that
parallel to the troughs; and~ii ! the commensurability ratio o
the spacinga8 between these Bragg planes to the periodd of
the laser potential, defined byp[a8/d. In this paper we will
primarily focus on the commensurate case defined bypPZ,
and defer the rich phenomenology of the incommensu
case and the commensurate-incommensurate transitions
later publication@27#.

For these commensurate densities, independent of th
der of commensurabilityp, at the lowest temperatures w
always find that our system freezes into an interesting typ
a crystal, which we call a ‘‘locked floating solid’’~LFS!
phase. This phase derives its apparently contradictory n
from its highly anisotropic properties: while the solid
pinned transversely to the troughs of the periodic poten
executing only massive optical phonon-like excitations
that direction, it is able to slide freely along the potent
minima with acoustic phonon excitations within the trough
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Upon integrating out the massiveuy modes and using stan
dard renormalization group methods@5# to eliminate bound
dislocation pairs in the LFS phase, we are left with a fr
energy with temperature and potential strength dependenef-
fectiveelastic constants:

HLFS5
1

2 E d2r $Keff~]xux!
21meff~]yux!

2%. ~1.3!

The structure function of a LFS is quite unusual. Like t
high temperature modulated liquid discussed above, the
displays a set of delta-function Bragg peaks~reduced by the
Debye-Waller factor! located at the multiples of the lase
potential reciprocal lattice vectorK5(2p/d) ŷ, which coex-
ist with otherspontaneouslyinduced Bragg and quasi-Brag
peaks.

The more detailed properties of the LFS and other pha
exhibited by our system, strongly depend on the choice
the infinite set of colloidal crystal orientations relative to t
light interference fringes. While we will explore these n
merous possibilities in their full generality in the main bod
of the paper, in this subsection we summarize our res
only for the simplest orientation studied in the experime
of Refs.@16,22#, in which the periodic potential troughs ru
parallel to theprimary Bragg planes@28#.

Experimentally, we expect our system to display a co
siderable amount of irreversibility, with the choice of th
relative orientation highly dependent on the way the syst
is taken into the crystal state: if the laser potential is turn
on in the liquid phase~field cooled!, the crystal will freeze
into the lowest energy orientation consistent with the i
posed colloidal density~or the chemical potential! and laser
fringe spacing@29#; in contrast, in zero-laser-field coolin
experiments, an already formed crystal may be unable
reorient significantly, and will therefore lock into a met
stable orientation, determined by the plane of the two int
fering laser beams.

Once we focus on the primary orientation, illustrated f
p52 in Fig. 1, the phenomenology of our system is co
pletely determined by the integer commensurability ratiop.
As we will show, for commensurate densities, our syst
admits three phase diagram topologies, corresponding to

FIG. 1. Triangular lattice with lattice constanta subject to a
periodic potential~maxima indicated by dashed lines! for pd5a8,
with a85A3a/2 andp52. Also shown is the low energy disloca
tion with Burgers vectorb parallel to the corrugation of the externa
potential.
3-3
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LEO RADZIHOVSKY, ERWIN FREY, AND DAVID R. NELSON PHYSICAL REVIEW E63 031503
three ranges of the values ofp: ~i! p51 @30#, ~ii ! 1,p
<pc , and~iii ! p.pc , with the critical value ofpc'3.7 for
the primary orientation.

1. Commensurability ratio pÄ1

For p51 @30#, we find the phase behavior of the 2D co
loidal system as summarized by the phase diagram illustr
in Fig. 2.

Because the sharp distinction between the hexatic and
tropic liquid phases is absent in the presence of a perio
potential, this phase diagram contains only two thermo
namically distinct phases at finiteUK : the modulated liquid
phase and the simplestp51 ‘‘locked floating solid’’ phase.
We can estimate the order of magnitude of the transit
temperature between the LFS and liquid phases in term
microscopic elastic constants@similar to those appearing in
Eq. ~1.3!# as follows: In the limit of a strong laser potenti
the particles are confined to a parallel array of equally spa
1D channels of spacingd, illustrated in Fig. 3. Ifun(x) is the
particle displacement field along thenth channel, we can
write the energy of these weakly coupled one-dimensio
rows of particles as

H5d(
n
E dxH 1

2
KS dun

dx D 2

2mS a

2pdD 2

cosF2p

a
@un11~x!2un~x!#G J , ~1.4!

FIG. 2. Schematic phase diagram for a primary commensu
orientation with commensurability ratiop51. Th indicates the tran-
sition temperature from the hexatic to the isotropic liquid phase
UK50. Insets:Schematic structure functions in the various phas
The3 ’s indicate delta-function Bragg peaks, and the shaded cir
algebraic peaks.

FIG. 3. Colloidal particles in channels, labeled byn, with intra-
channel compressional modulusK and interchannel shear couplin
m.
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where K is the bare compressional elastic modulus with
each channel, andm is the microscopic coupling between th
channels determining the shear modulus of the 2D sys
@31#. At high temperatures or weak microscopic couplingm,
the colloid decomposes into an orientationally ordered tw
dimensional liquid of decoupled one-dimensional chann
At temperatureT, the phonon fluctuations within a chann
then grow according to

^uun~x!2un~0!u2&5
kBT

dK
x, ~1.5!

as can be seen from the equipartition theorem. Upon cho
ing x such that the root mean square phonon fluctuations
equal to the intrachannel particle spacinga, we determine a
translational correlation lengthjT(T), which diverges at low
temperatures:

jT~T!5
Kd

kBT
a2. ~1.6!

The channels will couple to form a coherent tw
dimensional LFS phase when the effective coupli
djT(T)m(a/2pd)2 between correlated 1D regions of siz
jT(T) surpasses the thermal energykBT which decorrelates
the 1D channels. We associate this characteristic tempera
with the melting temperatureTm of the LFS phase, which is
therefore given by

kBTm5const3a2AmK. ~1.7!

A similar argument leads to the estimate for freezing into
three-dimensional locked floating solid phases discussed
Carraro @32# for rare gas atoms adsorbed into bundles
carbon nanotubes. As we describe in Appendix A, in ter
of the weakly coupled model@Eq. ~1.4!#, freezing into a LFS
takes place at a strong couplingm, and therefore does no
allow a rigorous renormalization group treatment of the tra
sition. Nevertheless an approximate variational treatmen
possible, and is presented in Appendix A.

Instead, here we take an alternative route to the stud
the LFS melting and other transitions by working within
continuum elastic model@Eq. ~1.3!#, which is equivalent to
the strong coupling~between the channels! limit of the dis-
crete model in Eq.~1.4!. Such an approach allows a mo
refined and asymptotically exact renormalization gro
analysis~presented below!, within which we find that forp
51 the melting of the LFS phase is in the universality cla
of the XY model, and is driven by unbinding of dislocatio
pairs with Burgers vectorsb5ax̂ along the troughs of the
periodic potential. Consequently, in contrast to the conv
tional 2D melting transition, at the melting temperatureTm ,
we predict auniversal ratio of the jump in the geometric
mean of the long wavelength effective shear and b
moduli, meff(Tm

2) and Keff(Tm
2) ~describing the elasticity of

the LFS phase! to Tm :

AKeff~Tm
2!meff~Tm

2!

kBTm
5

8p

ubu2
. ~1.8!

te

t
.
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This is in agreement, up to constants of order 1, with
rough estimate of the melting temperature@Eq. ~1.7!#
sketched above, and with the variational method presente
Appendix A. The most striking feature of thep51 LFS
melting phase transition is the shape of the phase boun
Tm(UK), whose universal features guarantee a generic
reentrant melting, under conditions such as the experim
of Wei et al. @22#. At low light intensities, i.e., smallUK , we
find that the melting curve has a universal, cusp shape,

Tm~UK!;Tm~0!1@ ln~kBTm /UK!#21/n̄, ~1.9!

with n̄'0.36963. On the other hand, for largeUK , i.e., for
kBTm(UK)/UK!1, we find that for short-range particle in
teractions (ka*5.8), Tm(UK) genericallyincreaseswith de-
creasing amplitudeUK of the periodic modulation, accordin
to

Tm~UK!5Tm
`H 11

5@~ka!2231#

64p2 S 11
13

3kaD kBTm
`

p2UK
J
~1.10!

thus implying reentrant melting for a band of temperatures
a function of potential strength~see Fig. 2!. In Eq. ~1.10!
above,k is the inverse of the Debye screening length, tu
able by adjusting the solution salt concentration, andTm

`

[Tm(UK→`), which, for the system studied in Ref.@22#,
we estimate to be approximately 1.3Tm(UK50).

The structure function for thep51 LFS phase, illustrated
in Fig. 2, is also quite unusual. In addition to the set of Bra
peaks, directly induced by the laser field,S(q) also displays
an independent set ofquasi-Bragg peaks at the off-qy-axis
reciprocal lattice vectorsG @5#,

S~q!;
1

uq2Gu22hG
, ~1.11!

which distinguishes the LFS from the modulated liquid sta
The corresponding density-density correlation funct
CG(r )5^rG(r )rG* (0)&, for reciprocal lattice vectors with
GxÞ0 shows a power-law decay

CG~r !;US meff

Keff
D 1/2

x21S Keff

meff
D 1/2

y2U2hG/2

, ~1.12!

wheremeff and Keff are the effective shear and bulk elas
moduli in Eq.~1.3! for the deformations along the troughs (x
axis! of the periodic potential. The exponenthG depends on
the relative orientation of the colloidal crystal and t
troughs. Unlike conventional 2D melting@5#, it is universal
at the melting transition, and is given by

hG* [hG~Tm
2!5~G•b/4p!2, ~1.13!

whereb is the smallest allowed Burgers vector in the trou
direction. For the primary orientation, illustrated in Fig.
with b5a, the exponent characterizing the algebraic orde
the off-axis peaks~see Fig. 2! closest to theqy axis is hG*
51/4; for the next row of peaks, withGx54p/a, we find
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hG* 51, consistent with the algebraic decay observed in R
@22# ~for a more detailed discussion, see Sec. VII!.

Our analysis also makesexactpredictions for the structure
function peak amplitudes in the limit of low laser intensit
Similar to the hexatic orientational order parameterc6 @Eq.
~1.1!#, the translational order parameter, defined byMKn

[^rKn
&, is induced by the periodic potential throughout t

phase diagram. However, in contrast to the liquid pha
where it vanishes linearly withUK , in the crystal phase, fo
T,Tm(0), we find

MKn
;uUKu1/dM, ~1.14!

with dM defined in analogy with the critical exponent at
ferromagnetic critical point,

1/dM5
h̄Kn

42h̄Kn

, ~1.15!

and where

h̄Kn
5

kBT

4p

3m1l

m~2m1l!
Kn

2 ~1.16!

is the exponent with which the real-space density-den
correlation function decays in a 2D crystalwithout a sub-
strate potential@5#. We therefore predict that forT,Tm(0)
the intensity of the on-qy-axis Bragg peaks vanishes as
exactpower of the input laser intensityI in , according to

I out~Kn!;u^rKn
&u2I in , ~1.17a!

;I in
112/dM. ~1.17b!

In contrast, we predict the intensityI out of the off-axis
quasi-Bragg peaks, labeled by a reciprocal wave vectorG, to
vanish as

I out~G!;I in
112ĥG /(42ĥG)L22(h̄G2ĥG), ~1.18!

where

ĥG[h̄G~12Gx
2/G2!, ~1.19!

andL is the system size.
We can also define the translational correlation length

the widths of the off-qy-axis Lorentzian peaks in the struc
ture function. As the melting temperatureTm is approached
from above, given theXY nature of thep51 LFS melting
phase transition, we expect the correlation lengths para
and perpendicular to the troughs to diverge according to

jx,y;ec/uT2Tmu1/2
, ~1.20!

wherec is a constant of order unity.
3-5
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2. Intermediate commensurability ratios:1ËpËpc

For 1,p,pc , the phase diagram, illustrated in Fig.
generically includes an additional symmetry-allow
‘‘locked smectic’’ ~LSm! phase. The LSm phase distin
guishes itself from the modulated liquid by spontaneou
breaking the liquid’s discrete translational symmetry byd
down to translations bypd @33#. In contrast to the LFS
phase, however, the LSm phase exhibits only short-ra
correlations between colloidal positions lying in differe
troughs, and therefore does not resist shear deformation
displacements along the potential minima. Correspondin
as illustrated in Fig. 4, the structure function of the LS
phase displays spontaneously induced Bragg peaks atKn /p,
in addition to the Bragg peaks atKn , directly induced by the
laser interference fringes. For 1,p,pc , the LFS phase also
displays these spontaneous Bragg peaks on theqy axis atq
5Kn /p.

Symmetry dictates that the freezing of the modulated
uid into the LSm phase is in thep-state clockmodel univer-
sality class. Also, similar to the melting of thep51 LFS, we
find that the 1,p,pc LFS phase melts into a LSm phas
through a transition in theXY universality class, and will
therefore also exhibit the usual Kosterlitz-Thouless pheno
enology @4#. We have also added to the phase diagram
possibility of a direct transition from a LFS phase to a mod
lated liquid phase at intermediate potential strength. We
pect this transition to be different than the LFS-liquid tra
sition for p51. Whereas thep51 transition is in theXY
universality class, for 1,p,pc the LFS-liquid transition is
associated with simultaneous loss ofXY and discrete~Ising
for p52) order. Because at this latter transition two un
lated symmetries are simultaneously restored, we expect
be first order. At the multicritical point, where the liquid
LFS, and LSm phases meet, the critical behavior is pres
ably described by a two-dimensional compressible Is
model ~for p52) @34# of the form

FIG. 4. Schematic phase diagram for a primary commensu
orientation with a commensurability parameter in the range 1,p
,pc ~the casep52 is shown here!. Thin lines indicate continuous
phase transitions. The thick line between the LFS and the mo
lated liquid phase is most likely a first order phase boundary.Insets:
Schematic structure functions. As in Fig. 2, the3 ’s indicate delta-
function Bragg peaks, and the shaded circles algebraic peaks.
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H I2XY@u,S#5E d2r @ 1
2 ~¹S!21 1

2 rS21vS4#1HLFS@u#

1E d2r ~gx]xux1gy]yux!S
2. ~1.21!

S is a continuous Ising order parameter, that distinguis
the LSm phase from the liquid phase;gx,y are ‘‘magnetoelas-
tic’’ parameters, which couple the elastic strain to the ‘‘ma
netization’’ S, and where the parameters of the model a
tuned to the tricritical point at which both order paramete
vanish simultaneously. It would be interesting to study t
properties of such a tricritical point, which to our knowledg
has not been previously explored.

3. Large commensurability ratios and floating phases: pÌpc

For these higher values ofp, the complexity of the 2D
colloidal phase diagram~displayed in Fig. 5! further in-
creases, allowing two new phases, the ‘‘floating solid’’~FS!
and the ‘‘floating smectic’’~FSm! phases.

The new phases are distinguished from their ‘‘locke
counterparts, the LFS and LSm phases, by their ability
slide~float! acrossthe troughs of the periodic potential; tech
nically, the periodic potential is irrelevant~in the renormal-
ization group sense!, and therefore can be treated perturb
tively inside the FS and FSm phases. As illustrated in Fig
all the spontaneouslyinduced structure function peaks o
these floating phases arequasi-Bragg peaks, and therefor
the corresponding density correlation functions display re
spacepower-lawdecays, similar to Eq.~1.12!. Although, in
principle, the critical valuespc

S andpc
Sm for the appearance o

each of these floating phases are most likely distinct,
simplicity of the presentation we have takenpc

S5pc
Sm[pc .

If in reality these critical values are sufficiently distinct, an
pc

S,pc
Sm, then we expect an intermediate range ofp values,

pc
S,p,pc

Sm, for which no FSm appears.
We find that phase transitions between the correspond

locked and floating phases~LFS-FS and LSm-FSm! are in
the same universality class as the well-known thermal rou

te

u-

FIG. 5. Schematic phase diagram for a primary commensu
orientation with a commensurability parameterp.pc ~the casep
54 is shown here!. As in Fig. 4, the thick line indicates a first orde
transition.Insets:Schematic structure factors. As in Fig. 4, the3 ’s
indicate delta-function Bragg peaks, and the shaded circles a
braic peaks.
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NOVEL PHASES AND REENTRANT MELTING . . . PHYSICAL REVIEW E63 031503
ening transition@35#, the dual of the Kosterlitz-Thoules
~KT! transition, with an identical phenomenology. Similar
the XY-melting LFS-LSm transition discussed above, t
melting of the FS phase into the FSm phase proceeds vi
unbinding of dislocation pairs withx-directed Burgers vec
tors. However, because of the presence of massless spe
phonon modes in they direction~transverse to the troughs o
the periodic potential!, the melting of the FS phase into th
FSm phase might be modified.

The direct transition from LFS to FSm phases is m
likely first order. Here the order of theux modes changes
from quasi-long-range to short-range~via an unbinding of
type I dislocations, i.e., those with Burgers vector paralle
the troughs of the periodic potential!, and those of theuy
modes from long-range to quasi-long-range~via a depinning
from the laser potential, i.e., a roughening transition!. If both
order parameters become critical at the same point in
phase diagram, which will be the case at multicritical poi
where the FS, LFS, and FSm phases meet, we have a p
transition corresponds a simultaneous transition of the
type and its dual analog.

The remainder of this paper is organized as follows:
Sec. II, we introduce and motivate our model for 2D sol
subjected to a 1D periodic potential, and discuss the de
specific to the experiments on 2D colloids in the laser pot
tial @22#. In Sec. III, we give a detailed analysis of all th
phases which are allowed by symmetry. In particular,
static structure factors and correlation functions are d
cussed. The mechanisms—dislocation, unbinding and so
proliferation—driving the phase transitions are investiga
in Sec. IV. In Sec. V we derive the universal features of
melting phase boundary, demonstrating that for sufficien
short-range interactions it generically exhibits a reentr
melting observed in the experiments of Weiet al. @22#. Some
aspects of the response of the translational and bo
orientational order parameter to a small external 1D perio
potential are analyzed in Sec. VI using a renormlizat
group ~RG! crossover analysis. In Sec. VII we elaborate
some implications of our results to experiments and for co
puter simulations.

II. BASIC INGREDIENTS

A. ‘‘Microscopic’’ model

In the absence of external perturbations, we expect tha
sufficiently low temperatures the 2D colloidal system free
into a hexagonal 2D crystal illustrated in Fig. 6. Its latti

FIG. 6. Perturbation-free ideal hexagonal colloidal crystal, ch
acterized by fundamental lattice vectorsei .
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sitesrn5n1e11n2e2, with n1,2PZ, are spanned by a set o
lattice vectors

e15aêx , ~2.1a!

e25
a

2
~ êx1A3êy!, ~2.1b!

e35
a

2
~ êx2A3êy!, ~2.1c!

or equivalently, in Fourier space, the lattice is characteri
by a set of three fundamental reciprocal lattice vectors~see
Fig. 7!

G15
2p

a8
êy , ~2.2a!

G25
p

a8
~A3êx2êy!, ~2.2b!

G35
p

a8
~A3êx1êy!, ~2.2c!

with a85aA3/2, anda the mean colloidal spacing related
the particle densityr by r52/(A3a2).

At sufficiently long scales@36# and to quadratic order in
the elastic strain,

ui j 5
1
2 ~] iuj1] jui !, ~2.3!

associated with the colloidal displacement fieldu(x,y) rela-
tive to the equilibrium position in the unconstrained sol
the elastic energy of a 2D hexagonal crystal is well descri
by the continuum isotropic elastic Hamiltonian

H05
1

2 E d2r ~2mui j
2 1lukk

2 !. ~2.4!

The Lamécoefficientsm and l, with m the usual shear
modulus, are the only two elastic constants necessar
completely characterize the elastic energy associated
small deformations of an unperturbed 2D hexagonal soli

An applied 1D periodic potential, which in experimen
@16,22# with dielectric colloidal spheres is conveniently cr

-

FIG. 7. A set of three fundamental reciprocal lattice vectorsGi ,
which completely characterize a perfect hexagonal lattice.
3-7



ta
e

it

av

in

ith

cu

x-

te
in

a
en
l

th
f
-

ia

da
a

itu
n

d
ce

t
o

es
ctor

of
the
ri-

la-

eri-

a-
-
gg

or-

s-

m-

s.
ten-

LEO RADZIHOVSKY, ERWIN FREY, AND DAVID R. NELSON PHYSICAL REVIEW E63 031503
ated by two interfering laser beams, is easily incorporated
an additional energetic contributionHK ,

HK52UK

A3

2 (
n

cos$K•@rn1u~rn!#%, ~2.5!

where we have focused on the energetically most impor
lowest harmonicK of such a laser-induced potential. Th
coupling UK measures the strength of theK th harmonic of
the laser potential, proportional to the input laser intens
I in .

For the purpose of the discussion in this section we h
chosen an ‘‘internal’’ reference frame (êx ,êy) where the ori-
entation of the hexagonal lattice is kept fixed. Later, beg
ning with Sec. III we will switch to a ‘‘laboratory frame’’
( x̂,ŷ) where the orientation of the laser potential is fixed w
K i ŷ, i.e., with the troughs running parallel to thex̂ axis.

B. Commensurability and reciprocal lattice

For a general wave vectorK , the periodic ~laser!
potential—characterized by a plane wave,eiK•r—will not be
commensurate with the hexagonal lattice. Only for a parti
lar orientation and magnitude ofK will the spacing between
the potential minima match with the periodicity of the he
agonal lattice. It is this special set ofcommensurateperiodic
potentials that is the focus of our work here. The charac
istic set of commensurate wave vectors is easy to find s
the reciprocal lattice isdefined to be the set of all wave
vectorsG that yield plane waves with the periodicity of
given Bravais lattice. Hence commensurability is equival
to the condition thatK coincides with one of the reciproca
lattice vectorsG.

In other words, the planes defined by the minima of
external potential@cos(K•r )# are a superset of the family o
lattice planes~Bragg planes! defined by the shortest recipro
cal lattice vectorGmW 5m1G11m2G2, with Miller indicesm1
andm2, parallel to the wave vector of the external potent
K :

K5pGmW 5p1G11p2G2 . ~2.6!

Note that here we focus on situations where the colloi
particles are allowed to sit in the minima of the extern
potential only. More generally, one could also consider s
ations where the commensurability parameter is less tha
with p a rational fraction@30#.

With d52p/uK u being the periodicity of the potential an
amW8 52p/uGmW u defining the distance between the latti
planes, thecommensurability ratio pis given by

p[
amW8

d
5

uK u
uGmW u

~2.7a!

5
A3a/2

d
~m1

21m2
22m1m2!21/2. ~2.7b!

This allows us to characterize the laser potential by a se
Miller indices mW 5(m1 ,m2), and the commensurability rati
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p, i.e., in summary by a commensurability vectorpW 5pmW
5(p1 ,p2). Equivalently, the orientation of the Bragg plan
can also be characterized by the shortest direct lattice ve
pointing parallel to the troughs of the external potential,

RnW[n1e11n2e2 , ~2.8!

with the conditionRnW•GmW 50, i.e., (n1 ,n2)5(m1 ,2m2) a
set of integers~direct lattice Miller indices!, with no com-
mon factor complementary to the Miller indices.

In Fig. 8 we displayed an example for the simplest set
relative orientations between the periodic potential and
colloidal crystal. In our notation this corresponds to an o
entation (m1 ,m2)5(1,0) @or, equivalently, (n1 ,n2)5(1,0)]
and a commensurability ratiop53, i.e., K53G(1,0)53G1

and a Bragg row spacingamW8 5a85aA3/2. Because in such
mW 5(1,0) orientations, it isprimary Bragg rows@28# that run
parallel to the periodic potential troughs, we call these re
tive orientations ‘‘primary.’’ Aside from the simplicity of
these configurations, our interest in them is driven by exp
ments in Refs.@16,22#, where a primaryp51 orientation
was studied.

In addition to these primarypW 5p(1,0) configurations, we
will also make detailed predictions for the next simplestpW
5p(1,21) set of relative lattice-laser potential configur
tions, illustrated forp51 in Fig. 9. We call these orienta
tions ‘‘dual primary,’’ because they correspond to Bra
rows running perpendicular to afundamental real-spacelat-
tice vector withK5p(G12G2)52e34p/a2, rather than to
one of the threefundamental reciprocallattice vectors. In
terms of the direct lattice these dual-primary orientations c
respond to (n1 ,n2)5(1,1) and Bragg row spacingamW8
5a/2. An example of a more general orientation is illu
trated in Fig. 10.

Using the definition of commensurate configurations@Eq.
~2.6!#, in Eq. ~2.5!, we find thatHK reduces to

HK52UK

A3

2 (
rn

cos@K•u~rn!#, ~2.9a!

52UKa22E d2rcos@K•u~r !#, ~2.9b!

FIG. 8. 2D hexagonal colloidal crystal in the presence of a co
mensurate 1D periodic potential with periodd, commensurability
vector pW 53(1,0), and potential maxima indicated by solid line
Dashed lines denote the Bragg rows picked out by the laser po
tial minima.
3-8
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NOVEL PHASES AND REENTRANT MELTING . . . PHYSICAL REVIEW E63 031503
where in going from Eq.~2.9a! to Eq.~2.9b! we went over to
a continuum description, an innocuous approximation for
smoothuu(rn11)2u(rn)u!a distortions, that we study here

An equivalent ‘‘soft-spin’’ continuum description of th
above interaction is in terms of the elementary translatio
order parametersrGi

(r )5rGi

0 eiGi•[ r1u(r )] , with i 51 and 2.

The laser-induced periodic potentialhK(r )5Re@hK
0 eiK•r#

acts like an ordering field on thepW 56(p1 ,p2)th harmonics
of the fundamental order parametersrGi

(r ), allowing a lin-

ear coupling tor6G(r )5r6G
0 e6 iG•[ r1u(r )] ,

HK52aE d2r @hK* ~r !rG~r !1c.c.# ~2.10a!

52arG
0 hK

0 E d2r @ei (G2K )•reiG•u1c.c.#,

~2.10b!

which is finite at long scales only if the condition Eq.~2.6! is
satisfied, in which case it reduces to the expression give
Eq. ~2.9b!, with the identificationUK /a252arG

0 hK
0 . Hence

the periodic potential explicitly breaks translational symm
try and therefore induces a finite translational order para
etersr6K(r ) throughout the phase diagram.

C. Broken rotational symmetry and anisotropic elasticity

Throughout our phase diagram, the imposed 1D perio
potential alsoexplicitly breaks down the 2D rotational sym
metry toZ2 ~Ising! symmetry, corresponding to rotations b
p. We can see this more explicitly by noting that the las
potential hK(r )5Re@hK

0 eiK•r# generates a set of even-ran
tensor fields,

hi 1 . . . i 2n

(2n) 5] i 1
hK~r !] i 2

hK~r ! . . . ] i 2n
hK~r !, ~2.11!

FIG. 9. 2D hexagonal colloidal crystal in the presence of a co
mensurate 1D periodic potential with periodd, commensurability
vector pW 5(1,21), and potential maxima indicated by solid line
Dashed lines denote the Bragg rows picked out by the laser po
tial minima.
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where in above the overline denotes a spatial average.
lowest order, rank 2, tensor field is given by

hi j
(2)5] ihK~r !] jhK~r !, ~2.12a!

5 1
2 uhK

0 u2KiK j . ~2.12b!

It is clear from their definition that these laser-genera
2n-rank tensor fields have strengths proportional to (UK)2n

}(I in)
2n. They act as external ordering fields, which expl

itly break rotational invariance~modulo rotations byp) of
our system and therefore induce throughout our phase
gram finite 2n-adic orientational order parameters. These c
be characterized by rank-2n symmetric traceless tensor
which are real irreducible representations of the rotat
group, and are the ‘‘angular harmonics’’ of the lowest ord
~rank 2! nematic order parameter

Qi j
(2)5S~ n̂i n̂ j2

1
2 d i j !. ~2.13!

The unit vectorn̂ defines the principal axis of the nemat
order, and, given Eq.~2.12b!, points parallel or perpendicula
~depending on the sign of the coupling betweenhi j

(2) and
Qi j

(2)) to the periodic potential wave vectorK . In two dimen-
sions these 2n-rank tensor representations are well-known
be equivalent to the one-dimensional complex irreduci
representations

c2n5ei2nu. ~2.14!

Since in the presence of these laser-induced ordering fi
all c2n orientational order parameters are finite through
our phase diagram, no sharp continuousorientationalorder-
ing phase transitions are possible in our system. This is
contrast to the melting of the unperturbed lattice, where
thermodynamically sharp orientational phase transition is
lowed between the isotropic and the anisotropic~e.g.,
hexatic, in a hexagonal lattice! liquids @5#. Therefore,

-

n-

FIG. 10. 2D hexagonal colloidal crystal in the presence o
commensurate 1D periodic potential with periodd, commensurabil-
ity vector pW 5(2,21), and potential maxima indicated by soli
lines. Dashed lines denote the Bragg rows picked out by the l
potential minima.
3-9
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LEO RADZIHOVSKY, ERWIN FREY, AND DAVID R. NELSON PHYSICAL REVIEW E63 031503
throughout this paper we confine our attention only to pha
and phase transitions thatspontaneouslybreak thetransla-
tional symmetry of the explicitly orientationally ordered
modulated colloidal liquid phase.

The existence of these orientational ordering fieldsh2n
has important consequences to the form of the colloidal c
tal elastic energy. To deduce the form of the appropri
elastic Hamiltonian, it is instructive first to consider a 2
hexagonal lattice in the absence of suchexplicit symmetry
breaking fields. Such a state is characterized by a finite v
of the hexagonal orientational order parameterc6 @5#, with
the full 2D rotational symmetry broken down to the symm
try of discrete rotations by 2p/6. Nevertheless to a quadrat
order in the strain tensorui j , the energy is invariant under
full 2D rotation group.

In the absence of a periodic potential the hexagonal
entational order can be furtherspontaneouslybroken down
to a lower symmetry. A physically important example is
uniaxially distorted hexagonal 2D crystal of anisotropic, o
entationally ordered, molecules, as, for instance found i
nematic liquid crystal. Such a system exhibits aspontaneous
nematic order parameterQi j

(2) , which modifies the isotropic
elasticity H0 @Eq. ~2.4!#. To a quadratic order in the strai
ui j , three additional energetic contributions

dH05E d2r @a1ui j Qi j
(2)1a2~ui j Qi j

(2)!21a3ui j ujkQki
(2)#

~2.15!

are allowed. Because the nematic order is induced spont
ously, simultaneous rotations of the lattice degrees of fr
dom and of the nematic axis~encoded inQi j

(2)), relative to an
arbitrary frame fixed in the lab, are clearly symmetries
such a uniaxially distorted lattice. It is not difficult to sho
that this rotational freedom allows us to eliminatea1 cou-
pling linear inui j ,

Ha1
5a1SE d2r @uxx~sin2u2 1

2 !1uyy~cos2u2 1
2 !

1uxy2 sinu cosu#, ~2.16!

by a judicious choice of the rotation angleu and a uniaxial
area-preserving distortion

ui→ui1f i . ~2.17!

It is important to note that this is only possible because
three independent degrees of freedom,u, fx andfy , at our
disposal are sufficient to cancel the three independent lin
termsuxx , uyy , anduxy in Ha1

@Eq. ~2.16!#.

Adding Ha2
and Ha3

contributions@Eq. ~2.15!#, to the
Hamiltonian of an undistorted hexagonal lattice@Eq. ~2.4!#,
we find a general elastic Hamiltonian for aspontaneously
uniaxially distorted hexagonal lattice~in the absence of an
external potential! @37# given by

H0
a5E d2r @2muxy

2 1 1
2 lxxuxx

2 1 1
2 lyyuyy

2 1lxyuxxuyy#,

~2.18!
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where we have chosen a coordinate system in which thx
andy axes coincide with then̂ andẑ3n̂ principal axes of the
orientational nematic order parameterQi j

(2) . The two addi-
tional elastic constants, a total of four inH0

a , are consistent
with two new couplingsa2 and a3 allowed by the finite
orientational nematic order parameterQi j

(2) . The four inde-
pendent elastic constants also coincide with the expecta
that, with the symmetry betweenx andy broken, the elastic
energies associated with the strain tensor components

uxx5]xux , ~2.19a!

uyy5]yuy , ~2.19b!

uxy5
1
2 ~]xuy1]yux! ~2.19c!

are clearly independent. Although rotations relative to
orientational uniaxial order is no longer a symmetry ofH0

a ,
because only thesymmetricstrain tensorui j enters the elastic
energy,H0

a is still invariant under ‘‘atomic’’ displacements

u5u ẑ3r , ~2.20!

which correspond toglobal rigid rotations of the 2D solid, by
an infinitesimal angleu about thez axis. This latter symme-
try is clearly present in an anisotropic latticewithout an ex-
ternal pinning potential.

In contrast, however, in our system, the 1D periodic p
tential has afixedorientation in the laboratory frame. Henc
in addition to the uniaxial lattice anisotropy, such a poten
also explicitly breaks the symmetry of rotations relative
the lab ~and therefore to the periodic potential! frame. It
therefore picks out a special coordinate system relative
which the angleu is measured.

As discussed above such external potential acts as an
ternal 2n-rank tensor fields, and explicitly breaks the corr
sponding orientational symmetry. The appropriate elastic
ergy can be deduced by focusing on the lowest order nem
ordering fieldhi j

(2) . It allows the additional energetic contr
butions

Hh2
52E d2r @ui j hi j

(2)1Qi j
(2)hi j

(2)#, ~2.21!

that explicitly break the symmetry of rotations relative to t
frame picked out by the periodic potential.

For purposes of classification of the relative orientatio
discussed in Sec. II B, it was more convenient to keep
lattice fixed and to rotate the periodic potential into a p
ticular orientation, uniquely labeled by an integer 2D Mill
index vectorpW 5(p1 ,p2). However, once an orientation ha
been selected and classified bypW , to analyze the continuum
elastic model and its thermodynamics that follows it is mo
convenient to work in a coordinate system in which, inste
the troughs of the 1D periodic potential run along the newx
axis. For such a choice of a lab coordinate system,

hi j
(2)5 1

2 uhK
0 u2K2ŷi ŷ j . ~2.22!
3-10
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NOVEL PHASES AND REENTRANT MELTING . . . PHYSICAL REVIEW E63 031503
Using this expression forhi j
(2) together with that forQi j @Eq.

~2.13! inside of Eq.~2.21!#, and combining it withHa1
@Eq.

~2.16!#, we find the following symmetry breaking energet
contribution, which, in the presence of a 1D periodic pote
tial must be added toH0

a @Eq. ~2.18!#:

Ha11h2
5E d2r Fa1SuxxS sin2u2

1

2D1uyyS a1Scos2u

2
a1S

2
2hD1a1Suxysin 2u2

1

2
hScos2uG ,

~2.23!

whereh[ 1
2 K2uhK

0 u2, and angleu measures the deviation o
the nematic axisn̂ away fromK set by the orientation of the
periodic potential. While it is still possible to eliminate th
terms linear inuxx anduyy by a lattice distortion Eq.~2.17!,
in the presence of the external potential it is no longer p
sible to shift away theuxy term. Selectingf i so as to cance
uxx anduyy , and combining the resultingHa11h2

with H0
a ,

we find

Ha5E d2r F2muxy
2 1

1

2
lxxuxx

2 1
1

2
lyyuyy

2 1lxyuxxuyy

1auxysin 2u2
g

2
cos 2uG , ~2.24!

where we defined rotational symmetry breaking couplin
a[a1S andg[hS. It is clear from the abovea andg terms
in Ha that, in the absence of strain,uxy50, the energy is
minimized byu50, corresponding to the nematic axis alig
ment withK , imposed by the periodic potential. In the pre
ence of fluctuationsu will be small but finite. ExpandingHa,
above, in these small fluctuations, we obtain a final form
the elastic Hamiltonian characterizing our system

Hel5E d2r F2muxy
2 1

1

2
lxxuxx

2 1
1

2
lyyuyy

2 1lxyuxxuyy

12auxyu12gu2G . ~2.25!

Now, to complete our derivation, we must relate the an
u, characterizing the orientation of the nematic order to
elasticui degrees of freedom. We expect that the orientati
of the nematic and hexatic order parameters, present in
uniaxially distorted hexagonal lattice, are locked togeth
Since, in the crystalline phase, fluctuations in this bond
entational order are in turn locked to the local rotation an
induced by the phonon displacements, in the Hamilton
Eq. ~2.25! we can make the well-known identification

u5 1
2 ~]xuy2]yux!, ~2.26!

thereby completing our derivation. We find that the result
elastic Hamiltonian, which characterizes a hexagonal lat
in the presence of a 1D periodic potential, involves six el
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tic constants. While a similar form was suggested, based
symmetry, by Ostlund and Halperin@37# in their analysis of
melting of distorted hexagonal crystal films, thea term ap-
pearing in our Hamiltonian@Eq. ~2.25!# was missed in their
expression. As illustrated in Fig. 11, physically, thea term is
present because, with troughs running along thex direction,
an xy strain will bring particles in Bragg planes lying in th
troughs out of alignment with the minima of the period
potential. This generates a torque which attempts to ro
the lattice and improve the alignment.

The elastic HamiltonianHel @Eq. ~2.25!#, together with the
commensurate pinning potentialHK @Eq. ~2.9b!#, defines our
model 2D colloidal system in the presence of a commen
rate periodic laser potential. Our aim in the remainder of
paper is to analyze the symmetry allowed phases and
nature of the transitions between them embodied in
model.

III. SYMMETRY-ALLOWED PHASES

The starting point of our analysis is the model Ham
tonian H5Hel1HK , obtained from combining Eqs.~2.9b!
and~2.25!. Here we have chosen~without loss of generality!
K to lie along they axis, i.e., the periodic potential trough
running parallel to thex axis, a convention that we will stick
to throughout the remainder of the paper. This Hamilton
admits a rich variety of thermodynamically distinct phas
As discussed in Sec. I, the phase diagrams depend on
commensurability ratiop, or more specifically, in which of
the three regimesp51, 1,p<pc , or p.pc , p actually
falls. The complexity of the phase diagram is highest forp
.pc , and so in order to discuss all the phases possible in
system, we focus on these highp commensurability ratios.

It is convenient to enumerate the five allowed pha
starting with the most ordered, which naturally occurs at
lowest temperatures, and proceeding toward the higher t
perature disordered phases, by invoking two types of dis
dering mechanisms:dislocation unbindingandsoliton prolif-
eration. A detailed investigation of these mechanisms
deferred to Sec. IV, where we discuss the nature of th
transitions and their hierarchy as a function of temperat

FIG. 11. A uxyÞ0 shear deformation~shown for simplicity for
a square lattice! with principal axes along the (1,1) and (1,21)
directions in thexy plane. In the presence of a trough potent
~dashed lines! parallel to thex direction, the particle array, with
axesx8 and y8, can lower its interaction energy with the period
potential by rotating in a clockwise direction to bring the particl
into better alignment with the minima in the trough potential.
3-11
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and periodic potential strength~laser intensity!. Here we fo-
cus on the phases themselves, rather than on their locatio
the resulting phase diagram. As discussed in detail in Sec
and I, the imposed periodic potentialexplicitly breaks rota-
tional symmetry, and therefore all five phases exhibit t
long-range orientational order. This external potential a
explicitly breaks continuous translational symmetry alongy
~with potential troughs taken to run alongx) down to a dis-
crete symmetry of translations by the periodd of the poten-
tial. Hence all phases will trivially exhibit long-range ord
in the corresponding translational order parameter, leadin
true delta-function Bragg peaks at the multiples of the rec
rocal lattice vector (2p/d) ŷ in their structure functions.

A. Solid phases

As in the absence of a periodic potential, the most orde
phase of isotropic particles confined to two dimensions i
solid. The striking effect of turning on an external 1D pe
odic potential is that it can lead to two thermodynamica
distinct uniaxially distorted hexagonal crystal phases, wh
we term a locked floating solid and a floating solid. Bei
crystalline, both of these phases exhibit 2D translatio
~quasi-long-range! order, and are characterized by a fin
shear modulus. These emerge as a result of breaking
translational symmetryTd

y
^ Tx of the ‘‘modulated liquid’’

~see below!, corresponding to independent discrete trans
tions bydŷ and continuous translations alongx̂, down to 2D
discrete translations generated by lattice vectorse1 and e2
@Eqs.~2.1a! and~2.1b!#. Although in the presence of therma
fluctuations dislocations will be thermally nucleated, in t
solid phases they are confined to finite size dipoles wit
zero Burgers ‘‘charge.’’ These, therefore, can be safely in
grated out of the partition function with only weakfinite
renormalization of the elastic constants. Consequently
purely elastic description in terms of phonon modesux and
uy is appropriate in both phases.

The LFS and FS phases differ in the importance of
periodic pinning potential. In the FS phase, expected to oc
at temperatures higher than the LFS phase, thermal fluc
tions in the positions of the colloidal particles are sufficien
large such that at long length scales they average away
@38# of the long scale effects of the periodic potential.
contrast, in the LFS phase the periodic potential stron
pins the colloidal crystal transversely to its troughs.

1. Floating solid (FS) phase

A floating solid phase can be rigorously differentiat
from its locked counterpart as a 2D colloidal crystal phase
which the periodic potential isirrelevant in the renormaliza-
tion group sense. This implies that at long scales, many,
not all ~see below! of the thermodynamic properties of a F
phase are well described by the elastic HamiltonianHel @Eq.
~2.25!#, with two coupled‘‘massless’’ ux anduy degrees of
freedom, and ignoringHK . Therefore, in many ways a F
phase is qualitatively quite similar to a 2D solid without t
periodic pinning potential. In particular, this similarity ex
tends to the lattice displacement correlation functions wh
are logarithmic inx andy. However, these similarities do no
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extend to all correlation functions, and the periodic pinni
potential has important qualitative consequences for the
phase that distinguish it from an ordinary 2D solid. The ‘‘i
relevance’’ of the periodic potential means only that a p
turbative expansion inUK , for a sufficiently small value is
convergent. Consequently, average quantities, that are fin
at UK50, can be well approximated by theirUK50 values,
i.e., working with H'Hel , as is usually done. However
quantities thatvanish~or diverge! to this zeroth order mus
be evaluated to the next lowest order inUK to obtain a non-
trivial ~finite! result.

To illustrate this point, recall that the periodic potenti
explicitly breaks rotational and translational symmetry, d
spite its irrelevance in the FS phase. While the former le
to uniaxial anisotropy in the hexagonal lattice, the latter
responsible for the true long-range order in the translatio
order parameterrG(r ), with G integer multiples of the wave
vectorK characterizing the periodicity of the external pote
tial. In the presence of the periodic potential, even the m
disordered modulated liquid phase~see below! displays true
long-range translational and orientational order. Clearly th
a more ordered FS will also break these symmetries.

As a concrete example of how the periodic potential
fects the FS phase, consider the real-space two-point co
lation function of the translational order parameter

rG~r ![eiG•u(r ) ~3.1!

defined by

CG~r ![^rG~r !rG* ~0!&, ~3.2a!

5^eiG•[u(r )2u(0)]&, ~3.2b!

[CG
(c)~r !1^rG&^rG* &, ~3.2c!

where, in Eq.~3.2c!, CG
(c)(r ) is the connected part ofCG(r ).

The distinguishing feature of the FS phase is the irreleva
of the periodic potentialHK . Hence in the limit of a weak
laser potential, i.e., smallUK , we can computeCG(r ) in a
controlled, convergent perturbative expansion inUK . The
connected partCG

(c)(r ) is nontrivial even to zeroth order in
UK , and a standard calculation gives@5#

CG
(c)~r !;

1

ur u h̄G
, ~3.3!

where

h̄G5
uGu2

4p

kBT

m

3m1l

2m1l
. ~3.4!

For simplicity, we have used the isotropic elastic Ham
tonian@Eq. ~2.4!#, in place of the correct six elastic consta
anisotropic HamiltonianHel @Eq. ~2.25!#, which leads to a
qualitatively similar, but anisotropic, power-law decay
spatial correlations. We use long wavelength elastic c
3-12
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stants finitely renormalized by thermally excited bound d
location dipoles. We can compute the persistent part
CG(r ), by calculating

^rG&5^eiG•u(0)&, ~3.5!

in a perturbation theory inUK , which, because of the irrel
evance of the periodic potential is convergent in the
phase. ForUK50 the translational order parameter vanish
like ^rG&05(L/a)2h̄G/2 with system sizeL→`. Upon ex-
panding the Boltzmann weighte2(H01HK)/kBT in a power se-
ries in UK , we find to leading order inUK and forL→`

^rG&5 (
n51

`
1

n! S UK

2a2kBT
D n

~dG,nK1dG,2nK !

3)
j 51

n E d2r j)
j 51

n

~ ur j u/a!2nh̄K)
i , j

n

~ ur i2r j u/a!2h̄K.

~3.6!

Here we have used the fact that forL→`,

K expF i(
a

qa•u~ra!G L
0

5expF (
a,b

qa•qbG(c)~ra2rb!G
~3.7!

for (aqa50, and zero otherwise. We have also introduce
phonon connected correlation functionG(c)(r ):

G(c)~r ![ 1
4 ^uu~0!2u~r !u2&0 . ~3.8!

Averages with elastic Hamiltonian are designated
^•••&0. Again approximatingHel by its isotropic formH0
@Eq. ~2.4!#, a straightforward calculation in the limitL/a
@1, r /a@1 gives

G(c)~r !'
h̄G

G2
log~r /a!. ~3.9!

SinceUK is irrelevant in the floating solid phase, the int
grals in Eq.~3.6! are IR convergent~i.e., for L→`). The
power laws appearing in the integrand are implicitly und
stood to be cut off below the lattice constanta scale by the
obvious behavior@see Eq.~3.8!# of the phonon correlation
function limr→aG(c)(r )50. Upon performing the spatial in
tegrals, which are dominated by the behavior of the c
nected phonon correlation function at small distances~UV,
lattice cutoff a), we obtain, up to nonuniversal factors
order 1,

^rG&' (
n51

`
1

n! S UK

2a2kBT
D n

~dG,nK1dG,2nK !. ~3.10!

Hence, as argued above on physical grounds, despite
irrelevance of the periodic potential, the FS displays t
long-range order in the translational order parameterrG ,
with G satisfying G56nK , with CG(r ) approaching its
asymptotic value as a power law inr. Other translational
order parameters, withG not satisfying the above condition
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have pure power-law correlation functions, decaying to z
at long separations. In particular, these include the fun
mental translational order parametersrGi

, which display
quasi-long-range order in the FS phase.

Having calculated the translational correlation functi
CG(r ), the structure function

S~q!5(
rm

e2 iq•rmCq~rm! ~3.11!

can now be easily obtained. Using Eqs.~3.2a!, ~3.3!, and
~3.10!, and taking advantage of the Poisson summation
mula to perform the sum over the lattice sitesrm , we find

S~q!'(
G

1

uq2Gu22h̄G
1 ( 8

n52`

`

And (2)~q2nK !,

~3.12!

with

An5
1

~n! !2 S UK

2a2kBT
D 2n

, ~3.13!

the prime on the summation in Eq.~3.12! indicating that the
n50 term is excluded.

Equation~3.12! predicts true Bragg peaks~with power-
law corrections! at multiples of the periodic potential wav
vector K and pure power-law~quasi-! Bragg peaks atall
other reciprocal lattice vectorsG, even for those withGiK .
Note that in a real physical system, the periodic potential w
not in general be a single harmonic, as assumed in our mo
@Eq. ~2.5!#. Hence we expect that the Bragg peak amplitu
An observed in experiments will be asumof terms like those
in Eq. ~3.13!, and the square of the amplitude of thenth
Fourier harmonicUnK of the applied periodic potential. Thi
of course will only modify the prefactors in the differen
contributions toS(q), predicted for the FS in Eq.~3.12!. We
schematically illustrateS(q) for a floating solid in Fig. 12 for
the commensurability vectorspW 5(5,0) andpW 5(2,22), re-
spectively, with they axis chosen to point alongK .

The set of on-q̂y-axis quasi-Bragg peaks~indicated by
open circles! interleaving the true Bragg peaks~indicated by
‘‘ x’’ ’s ! is the notable feature that distinguishes the FS fr
its locked counterpart LFS, in whichall on-q̂y-axis peaks are
true Bragg peaks.

2. Locked floating solid (LFS) phase

At sufficiently low temperatures, the periodic potenti
will always be a relevant perturbation, pinning the 2D so
in the direction perpendicular to its troughs. Because of
1D nature of the pinning potential, a 2D crystal will rema
unpinned along the direction of the potential minima, a
will be able to adjust freely in that direction. To reflect th
dual character, we therefore call this phase thelocked float-
ing solid phase.
3-13
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At a high laser intensity, such that the bare value of
pinning energyUK is much larger than the elastic energ
ma2 for the shortest wavelength phonon mode~and therefore
all wavelength phonon modes! our system is in thestrong
pinning regime. For a commensurate periodic potential,
this regime, fluctuations in the lattice positions perpendicu
to the troughs are small, and the periodic potentialHK @Eq.
~2.9!#, can be safely expanded in powers of the correspo
ing phonon degree of freedom,K•u, leading to

HK'const1 1
2 UKa22E d2r @K•u~r !#2 ~3.14a!

'const1 1
2 UKa22K2E d2r uy

2~r !. ~3.14b!

In contrast, aweak pinning regime UK!ma2 consists of
two sets of elastic modes, those withk,kc and those with
k.kc , where kc[K/b* is a crossover wave vector fo
which the elastic energy densitym(kca)2 just balances the
pinning energy densityUK(b* )K2 at the same length scale
Since the pinning energy is subdominate to the elastic en
for modes withk.kc , we can simply integrate out thes
weakly pinned modes perturbatively inUK . This results in
an effective strength of the pinning potential given by

UK~b* !5UKb
*
2h̄K /2 . ~3.15!

After equating this with the corresponding elastic ene
m(a/b* )2, we find

b* 5S ma2

UK
D 2/(42h̄K)

, ~3.16!

which, when inserted inside Eq.~3.15!, leads to

FIG. 12. Schematic structure function for the FS phase with
commensurability vectors~a! pW 5(5,0) and~b! pW 5(2,22), illus-
trating a combination of the quasi-Bragg peaks and true Br
peak, given by Eq.~3.12!. Crosses indicate true Bragg peaks, a
open circles quasi-Bragg peaks.
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UK~b* !5UKS UK

ma2D h̄K /(42h̄K)

~3.17a!

5UK
4/(42h̄K)/~ma2!h̄K /(42h̄K). ~3.17b!

Since theuy fluctuations in the remaining strongly pinne
elastic modes are small, the effective pinning potentialHK
can once again be safely expanded in powers ofuy . Doing
this we obtain a result identical to Eq.~3.14b!, but with UK
replaced byUK(b* ) given in Eq.~3.17!.

Hence, in both strongly and weakly pinned regimes, u
like the FS phase, the LFS phase is characterized at
wavelengths by one acoustic (ux) phonon mode and one op
tical (uy) phonon mode, with an effective Hamiltonian

H5Hel1
m

2j2E d2r uy
2~r !. ~3.18!

Here we have introduced a correlation lengthj which, given
Eqs.~3.14b! and ~3.17!, reads

j22~UK!55
UK

ma2
K2 for

UK

ma2
@1,

S UK

ma2D 4/(42h̄K)

K2 for
UK

ma2
!1.

~3.19!

At length scales longer than the crossover scale set bj
@Eq. ~3.19!#, we can safely ignore the spatial derivative ofuy
terms, and the LFS phase is well described by an effec
Hamiltonian

HLFS5
1

2E d2r FByx~]yux!
21Bxx~]xux!

21
m

j2
uy

2G ,

~3.20!

where

Byx5~m1g2a!, ~3.21!

Bxx5lxx . ~3.22!

We can now compute the translational order parame
correlation function and the structure function that charac
ize the LFS phase. Repeating first the calculation for
persistent part determined bŷrG&, we immediately find,
that, as in all the phases in the presence of the periodic
tential, ^rG&Þ0 for G56nK . However, the distinguishing
feature of the LFS is that this average is finite forall G
parallel to K , by virtue of the finite pinning lengthj @Eq.
~3.19!#. This result can be immediately seen by noting th
for GuuK , the logarithmically divergent~with L) ^ux

2&0 cor-
relation function doesnot appear in^rG&0, where the sub-
script 0 again represents an average with the elastic Ha
tonianHel only. Instead we have

e

g
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^rG&5e2G2^uy
2&/2 ~3.23a!

5S a

j D h̄G/2

~3.23b!

which only involves the ‘‘massive’’uy degree of freedom
whose logarithmic correlations are cut off atLc5j, and
which is therefore finite even in the thermodynamic limit.

We can also obtain the above result via a straightforw
matching calculation. The difficulty of computing transl
tional correlation functions in the weakly pinned regime
the LFS phase is that for long length scales (.j), despite the
weakness of the pinning potential, a direct perturbative
pansion inUK is divergent because of its relevance~in the
renormalization group sense! inside the LFS phase. Th
power of the renormalization group is that it allows us
relate this difficult weakly pinned, smallUK regime to the
strongly pinned regime, whereUK has grown to the magni
tude of the elastic energyma2, and can therefore be treate
as a ‘‘mass,’’ as in Eq.~3.14b!. We can apply this matching
procedure to the computation of^rG(UK)& by using a rela-
tion between the weakly and strongly pinned regim
namely,

^rG~UK!&5b2h̄G/2^rG~UKb22h̄K /2!&, ~3.24!

obtained using the scaling dimension of the operatorrG and
the RG eigenvalue ofUK , both easily extracted from Eq
~3.3!. Choosing the arbitrary rescaling factorb5b* such that
UK(b) is in the strongly pinned regime, whereUK(b* )
5ma2, Eq. ~3.24! becomes

^rG~UK!&5S UK

ma2D h̄G /(42h̄K)

^rG~ma2!&. ~3.25!

Since the right hand side is in the strong coupling regime
can be easily computed using the coarse-grained Ha
tonian @Eq. ~3.18!#. Doing this we find

^rG~UK!&5S UK

ma2D h̄G /(42h̄K)

e(1/2)h̄Gln(Ka), ~3.26!

which in the weakly pinned regime is equivalent to the res
given in Eq.~3.23b!.

Note that the nontrivial nonlinear power-law response
the translational order parameter to the periodic laser po
tial, predicted by Eq.~3.26! is only a nonanalytic piece of th
full response, which includes an analytical backgrou
Hence, although at low temperatures, such thath̄G /(4
2h̄K),1, the full response in theUK→0 limit is dominated
by the nonanalytical part@Eq. ~3.26!#, at higher temperatures
the ever-present linear piece of the analytical part will dom
nate, and experimentally one should instead observe

^rG~UK!&;UK . ~3.27!

For our highly anisotropic system, the connected par
the correlation functionCG(r ), is given by
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CG
(c)~r !5e2(1/2)[Gx

2Gxx(r )12GxGyGxy(r )1Gy
2Gyy(r )] ,

~3.28!

where Gi j (r )[^@ui(r )2ui(0)#@uj (r )2uj (0)#& is the con-
nected phonon correlation function computed with the f
Hamiltonian. In the weakly pinned regime, for small leng
scales, all phonon correlation functions display the usual
logarithmic growth, which, in the isotropic approximatio
i.e., using HamiltonianH0 @Eq. ~2.4!# leads to the power-law
correlation forCG

(c)(r ) that we found in Eq.~3.3! for the FS
phase. However, for length scales longer thanj @Eq. ~3.19!#,
while Gxx(r ) will continue to grow logarithmically, such
growth in Gyx(r ) andGyy(r ) will be cut off by the pinning
lengthj. Consequently, in the LFS phase we find

CG
(c)~r !'S a

r D hGxS a

j D h̄Gy

, ~3.29!

where

hGx
5

Gx
2

2p

kBT

ABxxByx

~3.30!

which reduces tohGx
5(Gx

2/2p)@kBT/Am(2m1l)# when
the effect of the periodic potential on elasticity and renorm
izations due to dislocation pairs on the effective elastic
efficients are neglected. A discrete Fourier transform of t
correlation function gives the corresponding structure fu
tion

S~q!'(
G

F BG

uq2Gu22hGx

1AGd (2)~q2G!G , ~3.31!

where the quasi-Bragg peak amplitudeBG is given by

BG}S a

j D h̄Gy

~3.32a!

}5 U
K

h̄Gy
/2

for
UK

ma2
@1

U
K

2h̄Gy
/(42h̄K)

for
UK

ma2
!1

~3.32b!

and the Bragg peak amplitudeAG ,

AG}dGx,0S a

j D h̄G

~3.33a!

}dGx,05 UK
h̄G/2

for
UK

ma2
@1

UK
2h̄G /(42h̄K)

for
UK

ma2
!1,

~3.33b!

which is finite if and only if G is parallel toK . As a conse-
quence of the discussion after Eq.~3.26!, the amplitudeAG
3-15
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will also have a background analytic inUK , which in a weak
pinning limit scales asUK

2 @see Eq.~3.27!#, and therefore at
higher temperatures will dominate over the nonanalyti
part predicted in Eq.~3.33b!.

We illustrate schematicallyS(q) in Fig. 13 for the com-
mensurability vectorspW 5(5,0) andpW 5(2,22), respectively,
with the y axis chosen to point alongK .

These predictions for the structure function of the L
phase, displaying amplitudes that vanish as nontrivial pow
~determined by a continuously varying exponenth̄Gy

) of the
periodic potential strength@Eqs.~3.32b! and~3.33b!# provide
a theoretical explanation for observations of Chowdhuryet
al. @16#.

B. Smectic phases

As first pointed out by Ostlund and Halperin@37#, in
uniaxial two-dimensional lattices, dislocations with Burge
vector along and perpendicular to the uniaxial axis will g
nerically have different core energies, and will therefore p
liferate at different temperatures. This will consequently
low the possibility of a phase that is intermediate betwee
fully ordered crystal and a completely disordered liquid.

In a commensurate orientation, such that Bragg rows
incide with the periodic potential troughs, we would expe
dislocation pairs, with Burgers vectors parallel to the pot
tial minima, to unbind first. We refer to the resulting class
thermodynamically distinct phases as smectics. Their m
common characteristic is that they display a finite elas
modulus for shear deformations perpendicular to the Burg
vector of unbound dislocations, but do not resist shear p
allel to them, possessing only liquidlike correlations betwe
the corresponding ‘‘atomic’’ rows. Consequently, such 2
smectics display a 1D periodicity perpendicular to the B
gers vector of unbound dislocations, and, as illustrated

FIG. 13. Schematic structure function for the LFS phase w
the commensurability vectors~a! pW 5(5,0) and~b! pW 5(2,22), il-
lustrating a combination of the quasi-Bragg peaks and true Br
peaks, given by Eq.~3.31!.
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Fig. 14, can be equivalently described as a periodic stac
1D liquids.

It is important to note that, despite their name, the sm
tics discussed here are fundamentally distinct from the sm
tic phases found in liquid crystal materials and substrate-
smectics discussed in Ref.@37#. The most important distinc-
tion is that in liquid crystal smectics and those without
underlying pinning substrate, the orientational symmetry
brokenspontaneously~uniaxial anisotropy notwithstanding
see Sec. II C!, leading to a soft Laplacian-curvature~rather
than gradient-tension! elasticity, which preserves this unde
lying symmetry even in the smectic phase, where it is n
linearly realized @39,40#. In fact, such substrate-free 2D
smectics, because of the softness of their elasticity, are
known to be unstable to thermally driven unbinding of d
locations, and at scales longer than the distance betw
these free dislocations are therefore indistinguishable fro
nematically ordered 2D liquid@41#. As recognized by the
authors of Ref.@37#, such a thermal instability of substrate
free 2D lattices precludes the existence of a thermodyna
cally distinct intermediate 2D smectic phase in which on
one set of Burgers vectors~e.g., along the uniaxial direction!
unbind. However, in strong contrast to those rotationally
variant systems, in the 2D lattices studied here the perio
~laser! potentialexplicitly breaks rotational symmetry, bind
ing by a linear potential dislocation pairs with Burgers vec
having componentsalong K . Consequently, such disloca
tions remain bound even when those with Burgers vec
perpendicularto K unbind, and therefore allow the existenc
of 2D smectic phases that are thermodynamically disti
from a liquid.

Deep in such a smectic phase, theuy(r ) phonon field,
which ~see Fig. 14! describes local fluctuations in th
maxima positions of the 1D density wave, is the only r
maining important degree of freedom. The ever-pres
bounddislocation pairs and the density of vacancies and
terstitials are ‘‘massive’’ degrees of freedom. They can
easily integrated out, leading only to a finite renormalizati
of elastic constants foruy deformations, and therefore ar
unimportant in a static theory.

In close analogy to the translational order parameter
the 2D crystal, a smectic phase is distinguished from a liq
phase by a finite translational order parameterrG5eiG•u, but
with a single„rather than a set@Eq. ~2.2!#… reciprocal vector

h

g

FIG. 14. 2D colloidal smectic phase in the presence of a co
mensurate 1D periodic potential with periodd, commensurability
parameterp53, and potential maxima indicated by full horizont
lines. Dashed lines denote the maxima in the smectic density, w
are pinned inside the minima of the periodic laser potential.
3-16
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G5Gŷ5(2p/a) ŷ. It is related to the total molecular densi
via a standard relation@39#

r~r !5Re@r01eiGyrG~r !#, ~3.34!

wherer0 is the mean density of the smectic.
Of course, in the presence of a 1D periodic potentia

smectic phase is a thermodynamically distinct phase on
G5(2p/a) ŷ differs from the wave vectorK characterizing
the external potential and the modulated liquid. Commen
rate smectic phases, which we focus on here, are equ
lently characterized by the ratio of their perioda to that of
the periodic potentiald, with commensurability ratioa/d
[pPZ. A p-smectic phase then spontaneously breaks
discrete translational symmetryTd

y
^ Tx of the modulated liq-

uid, with its equal occupancy of each potential minima do
to Ta

y
^ Tx, with only everypth minima equivalently popu-

lated. Clearly thenp51 smectic is indistinguishable from
fully disordered modulated liquid phase.

Above symmetry considerations uniquely specify t
Hamiltonian that characterizes thep-smectic phase,

HSm5E d2r $ 1
2 @Bxy~]xuy!21Byy~]yuy!2#

2UKa22cos@Kuy~r !#%, ~3.35!

which, not surprisingly, is an anisotropic scalar sine-Gord
model in the phonon fielduy(r ).

Given the form of the Hamiltonian in Eq.~3.35!, there is
a close similarity between the properties of the smectic
the 2D crystal studied in Sec. II. The quantitative differenc
between these phases are due to the distinction betwee
vector @u5(ux ,uy)# and scalar (uy) natures of elastic de
grees of freedom in the 2D solid and smectic phases, res
tively. More specifically, in close analogy to the 2D sol
phase, we find that for a fixed integer commensurability ra
p, there exist a low temperature ‘‘locked’’ and higher tem
perature ‘‘floating smectic’’ phase. These are distinguish
by the importance of the periodic pinning potential, which
relevant ~in the RG sense! in the LSm phase, acting as
‘‘mass’’ for uy , and irrelevant in the FSm phase, where
most static properties it can be ignored.

1. Floating smectic (FSm) phase

In the ‘‘floating smectic~FSm! phase,’’ thermal fluctua-
tions in the position of the layers are sufficiently large tha
long length scales they average away many effects of
periodic pinning potential. Hence, many of the static prop
ties of the FSm phase can be well described by the Ha
tonian @Eq. ~3.35!#, with UK50. However, as we discusse
in detail in our analysis of the FS phase, despite the
irrelevance of the periodic potential, continuous translatio
symmetry is still explicitly broken by it, which leads to tru
long-ranged translational order in the smectic order par
eter rG for Gŷ at multiples of the reciprocal lattice vecto
K ŷ, characterizing the laser potential.

Calculations that closely parallel those of Sec. III A 1 f
the FS phase, lead to power-law correlations in the c
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nected part of the translational two-point correlation functi

CG
(c)~r !;

1

ur uhFSm
, ~3.36!

where

hFSm5
kBTG2

2pABxyByy

~3.37!

is the exponent characterizing the FSm phase, in analog
h̄G @Eq. ~3.4!#, of the FS phase.

The disconnected part of the smectic translational co
lation function is finite only atG5nK (nPZ). The corre-
sponding floating smectic structure function is given by
expression similar to the FS@Eq. ~3.12!#. The only difference
is that h̄G of the FS phase is replaced byhFSm of the FSm
phase and the summation overG is a sum over integer mul
tiples of 2p/a. Consequently, one expects to see sharp pe
only on theqy axis, with power-law peaks atGÞnK, and
true Bragg peaks atG5nK. This FSm structure function is
schematically displayed in Fig. 15~a!.

2. Locked smectic (LSm) phase

As the temperature is lowered, the periodic potential
comes relevant, pinning the smectic layers. The resul
‘‘locked ~LSm! smectic phase’’ is characterized by lon
range translational order, and, as illustrated in Fig. 15, d
plays true Bragg peaks at all values of the on-qy-axis recip-

FIG. 15. ~a! Schematic of the structure function for the floatin
smectic phase, characterized by on-qy-axis quasi-Bragg peaks~open
circles! and true Bragg peaks~crosses!. ~b! Schematic of the struc-
ture function for the locked smectic phase, characterized by
qy-axis true Bragg peaks, with small and large crosses indica
spontaneously and directly induced translational order.
3-17
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LEO RADZIHOVSKY, ERWIN FREY, AND DAVID R. NELSON PHYSICAL REVIEW E63 031503
rocal lattice vectorsG5n2p/a. At long scales, the effective
elastic Hamiltonian that characterizes this phase is simp

HLSm5
1

2

m

j2E d2r uy
2 , ~3.38!

with j given by Eq.~3.19!.

3. Modulated liquid (ML) phase

The modulated liquid phase is the most disordered ph
which occurs at highest temperatures and does notspontane-
ouslybreak any symmetries. It is characterized by a vani
ing shear modulus, unbound dislocations, the absenc
massless Goldstone modes, and a discrete symmetry of t
lations along they axis by a periodic potential constantd.
The corresponding structure function of this explicitly orie
tationally ordered phase, illustrated in Fig. 16, is a set of t
Bragg peaks at multiples of the reciprocal lattice vectorK
52p/d of the periodic potential.

Finite linear translational order parameter susceptibil
guarantees that the average order parameter is linear in
strength of the periodic potential. Therefore, as is clear fr
Eq. ~1.17!, the strength of the Bragg peaks scales as acube
of the input laser intensity, proportional toUK , as observed
in experiments by Clark and co-workers@16,25#.

IV. PHASE TRANSITIONS

Phase transitions that take place in our system fall i
two broad classes: roughening and melting. However,
high values of the commensurability ratiop (p.pc) these
classes are mathematically related to each other by the d
ity transformations@42,8#, and are both examples of th
Kosterlitz-Thouless-type transitions, with kinks and disloc
tions unbinding, respectively. Forp,pc , the roughening

FIG. 16. Schematic of the structure function for the modula
liquid phase, characterized by on-qy-axis true Bragg peaks locate
at n(2p/d).
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transitions are in a different~Ising model and other model
with a discrete symmetry! universality class.

A. Roughening transitions

Phase transitions that fall into the roughening transit
universality class separate a low temperature ordered ph
in which a potential Goldstone mode is strongly pinned
an external periodic potential, from a quasi-long-range
dered phase, in which the periodic potential is irrelevant i
renormalization group sense. The locked floating solid
floating solid and locked smectic to floating smectic pha
transitions, discussed in Sec. III, fall into this broad unive
sality class, although they differ in details that we discu
below.

Despite these small differences the analysis of these t
sitions are quite similar, and can be done via standard
turbative momentum-shell renormalization group transf
mation @43,42#. Since smooth~locked! and rough~floating!
phases are distinguished by the relevance and irrelevanc
the periodic potential, respectively, we can find the transit
temperature by analyzing the behavior ofHK @Eq. ~2.5!# as a
function of length scale. We separate the phonon field, wh
for a solid phases is a two component vector and a scala
a smectic, into the high and small wave vector modes,

u~r !5u,~r !1u.~r !, ~4.1!

and integrate the high wave vector partu.(r ) perturbatively
in UK with nonvanishing Fourier components inside a th
momentum shell:

Le2 l,uqu,L. ~4.2!

We then rescale the lengths and long wavelength part of
fields with

r5elr 8, ~4.3a!

u,~r !5ef lu8~r 8!, ~4.3b!

so as to restore the ultraviolet cutoff back toL52p/a. Be-
cause the pinning potential nonlinearity is a periodic fun
tion, it is convenient~but not necessary! to take the arbitrary
field dimension to be

f50, ~4.4!

thereby preserving the perioda52p/L under the renormal-
ization group transformation@44#. Under this transformation
the resulting effective Hamiltonian,H5Hel1HK , can be re-
stored into its original form with effectivel -dependent elas
tic andUK couplings.

For the periodic pinning potential couplingUK , in a stan-
dard way@43,35# we find

UK~ l !5UKe2l 2(1/2)Ky
2^uy

2&., ~4.5!

where^uy
2&. is to be computed with the elastic Hamiltonia

appropriate to the phase being analyzed, keeping only mo
within an infinitesimal momentum shell near the zo
boundaryL. Hence the nature of the pinning by the substr

d

3-18
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NOVEL PHASES AND REENTRANT MELTING . . . PHYSICAL REVIEW E63 031503
potential and the transition temperature obviously depend
the degree of the translational order in the system,
whether the phase is solid or smectic.

1. Locked floating solid to floating solid phase transition

To determine the critical temperature for the LFS-to-
phase transition, we compute the^uy

2&. average using the
anisotropic elastic HamiltonianHel @Eq. ~2.25!# describing
the 2D solid phase in the presence of a 1D periodic poten
Rewriting Hel in terms of Fourier transformed phonon field
u(q), we find

Hel5E d2q

~2p!2 F1

2
~Bxxqx

21Byxqy
2!uux~q!u2

1
1

2
~Kxyqx

21Kyyqy
2!uuy~q!u21dqxqyux~q!uy~2q!G ,

~4.6!

where

Bxx[lxx , ~4.7a!

Byx[m2a1g, ~4.7b!

Kyy[lyy , ~4.7c!

Kxy[m1a1g, ~4.7d!

d[m1lxy2g, ~4.7e!

which, after a simple Gaussian integration, leads to

^uy
2&.5E

q

. kBT

Kyyqy
21Kxyqx

22
d2qx

2qy
2

Bxxqx
21Byxqy

2

, ~4.8!

where we have introduced the shorthand notation*q
.

[*.@d2q/(2p)2# for the integral over the momentum she
In the dilute limit, and neglecting effects of the periodic p
tential on the elastic coefficients, this reduces to

^uy
2&.5

kBT

2pm̄
l , ~4.9!

with m̄52m(2m1l)/(3m1l). In order to computêuy
2&.

in general, we use an elliptical~volume conserving! momen-
tum shell defined by major and minor axesLx

5LAKyy /Kxy andLy5LAKxy /Kyy. We find

^uy
2&.5

kBTc1

2pAKyyKxy

l , ~4.10!

where we defined a dimensionless numberc1 given by
03150
n
.,

l.

c1[E
0

2p du

2p

ax1~ay2ax!sin2u

ax1~ay2ax2axy!sin2u1axysin4u
,

~4.11!

and

ax[
Bxx

Kxy
, ~4.12a!

ay[
Byx

Kyy
, ~4.12b!

axy[
d2

KyyKxy
. ~4.12c!

Upon combining Eq.~4.10! and ~4.5!, we find the eigen-
value of the substrate potential to be

lp[22Ky
2 kBTc1

4pAKyyKxy

, ~4.13!

which, after setting

lp~TpS!50 ~4.14!

gives us the depinning transition temperatureTpS

kBTpS5
8p

c1
AKyyKxyS d

2p D 2

, ~4.15!

which separates the LFS and FS phases. In the dilute l
the transition temperature reduces to

kBTpS58pm̄S d

2p D 2

. ~4.16!

2. Locked smectic to floating smectic phase transition

As discussed in Sec. III B, at low colloidal densities o
system can exhibit LSm and FSm phases, and therefore
dergo a phase transition between them in the roughen
universality class. Analogously to the LFS-FS phase tran
tion analyzed above, we can calculate the pinning temp
ture for the LSm-FSm phase transition by computing
^uy

2&., that goes into Eq.~4.5!, and finding the temperatur
at which this RG eigenvalue vanishes. Using the Ham
tonianHSm, @Eq. ~3.35!# appropriate for the smectic phase
and computing to zeroth order in the pinning potentialUK ,
we find

^uy
2&.5E

q

. kBT

Bxyqx
21Byyqy

2
~4.17!

5
kBT

2pAByyBxy

l , ~4.18!

where for convenience we again used an elliptical mom
tum shell with axesLAByy /Bxy andLABxy /Byy.
3-19
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After combining this result with Eq.~4.5!, we find that
translational pinning by the periodic potential is relevant in
floating smectic phase forT,TpSm, with TpSm given by

kBTpSm58pAByyBxyS d

2p D 2

. ~4.19!

As discussed in more detail in Sec. V, the elastic mod
in Eqs.~4.15! and~4.19! are functions of the strength of th
pinning potentialUK , which in turn is proportional to the
input laser intensityI in . Hence the resulting function
TpS(I in) and TpSm(I in) in principle determine the LFS-FS
and LSm-FSm phase boundaries displayed in Fig. 5 for
loidal densities commensurate with the 1D periodic pot
tial.

B. Dislocation unbinding transitions

In the analysis of Sec. IV A, where we studied a therm
depinning transition within the solid phase, we implicitly a
sumed that the dislocations that distinguish the 2D solid
smectic phases from the higher temperature disorde
phases remain bound. Hence these calculations for the
ning transitions and Eqs.~4.15! and~4.19! remain valid only
if they fall below the corresponding dislocation unbindin
melting transition temperatures, which we now compute.

1. Locked floating solid to locked smectic phase transition

It is easy to see from the effective HamiltonianHLFS @Eq.
~3.20!# that the most striking consequence of the 1D perio
potential is that it leads to the LFS phase, in which the p
non degree of freedomuy , corresponding to displacemen
transverse to the potential troughs acquires a ‘‘mass’’@Eq.
~3.19!#, and as a consequence is effectively suppres
Therefore, this phonon mode can be safely integrated
leaving an effective anisotropic 2DXY Hamiltonian, with
temperature and potential strength dependenteffectiveelastic
constants,

HLFS5 1
2 E d2r @Byx~]yux!

21Bxx~]xux!
2#, ~4.20!

that describes a locked floating solid at scales longer than
correlation lengthj introduced in Sec. III A 2.

The melting of the LFS phase can be understood in te
of dislocation unbinding. However, in contrast to melting
the absence of an external~e.g., substrate or laser! potential
@5#, here only the so-called type I dislocation pairs~in the
notation of Ref.@37#! with Burgers vectors6b156bnW x̂ ~see
Sec. II B! aligned parallel to the trough direction~which we
continue to take along thex axis! can be thermally unbound
In the presence of a periodic potential, oppositely char
dislocations, with Burgers vectors not satisfying the abo
condition ~type II dislocations!, are bound by a potentia
which grows linearly with the separation and therefore c
not thermally unbind. This discussion is consistent with
mapping ontoscalar Coulomb gas Hamiltonian, expected
describe logarithmically bound type I dislocations, embod
in the 2D anisotropicXY model Hamiltonian@Eq. ~4.20!#.
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Away from the dislocation core, for a commensurate o
entation defined by the shortest direct lattice vector point
parallel to the troughs,RnW5n1e11n2e2, labeled by direct
lattice Miller indicesn1 andn2 defined by Eqs.~2.6!–~2.8!,
the displacement vectoru for the active type I dislocation is
given by

u5 x̂
bnW

2p
tan21S yBxx

1/2

xByx
1/2D , ~4.21!

with

bnW5uRnW u5aAn1
21n2

21n1n2. ~4.22!

Melting of the LFS phase via unbinding of these defects
identical to the vortex unbinding transition of an anisotrop
2D XY model. A standard calculation@4,5# leads to the pre-
diction for the LFS phase’s melting temperature

kBTLFS-LSm5
bnW

2

8p
ABxxByx, ~4.23!

and all other concomitant Kosterlitz-Thouless phenomen
ogy. This implies an exponential growth of the translation
correlation length@4#

j t'aec/uT2TLFS-LSmu1/2
, ~4.24!

with c a nonuniversal parameter, and auniversalratio of the
jump in the geometric mean of the shear and bulk mod
Byx(TLFS-LSm

2 ) andBxx(TLFS-LSm
2 ) to TLFS-LSm @45#.

The resulting high temperature phase is the LSm ph
@46#, for low colloidal densities~i.e., high commensurability
ratio p), and a modulated liquid for high densities (p<1; see
below!, for which the smectic is indistinguishable from
liquid. Because of the unusually strong growth of the tra
lational correlation lengthj t @Eq. ~4.24!#, the phenomenol-
ogy of the LSm-FSm phase transition that we studied in S
IV A 2 will be modified for T→TLFS-LSm

1 by a long crossover
from the crystal to smectic~or liquid! elasticity.

It is important to note the distinction between this anis
tropic 2DXY melting of a LFS phase into a LSm phase, a
an analogous type I melting mechanism of Ostlund and H
perin for melting of uniaxially anisotropic, but substrate-fr
2D solids@37#. In the latter case, thermal fluctuations des
bilize the resulting 2D smectic phase by further unbindi
type II dislocations, asymptotically converting it into a liq
uid. Here, because of the pinning potential, type II disloc
tions @e.g., 6b2,3 for pW 5(p,0)] remain bound by a linea
potential. The resulting LSm phase is therefore distinct fr
the ~orientationally ordered! modulated liquid~in which type
II dislocations are also unbound!, separated from it by a ther
modynamically sharp phase transition.

2. Floating solid to floating smectic phase transition

A floating solid phase can meltcontinuouslyvia unbind-
ing of the type I dislocations. However, in contrast to t
similar melting of a locked floating solid phase, here t
3-20
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dislocation unbinding in the displacementux proceeds in the
presence of another spectator massless phonon modeuy ,
which is coupled to it. Consequently, as we will show belo
this transition is anontrivial extension of the Kosterlitz-
Thouless theory, and, to our knowledge is, heretofore un
plored. Once these type I dislocations unbind the most lik
resulting phase is the floating smectic phase@46#.

The phenomenology of the FS-FSm melting transition c
be most easily analyzed by the following steps. We~i! intro-
duce dislocation degrees of freedom into the elastic Ham
tonianHel @Eq. ~2.25!#, ~ii ! perform a duality transformation
to convert the resulting Coulomb gas Hamiltonian into
modified sine-Gordon model, and~iii ! compute the disloca
tion unbinding temperature by analyzing the resulting d
model.

To execute these standard steps, it is convenient to
perform the following rescalings of spatial coordinates,

x→x~Bxx /Byx!
1/4, ~4.25a!

y→y~Byx /Bxx!
1/4, ~4.25b!

which leads to the Hamiltonian

HFS5
1

2 E d2r @Kx~“ux!
21cx~]xuy!21cy~]yuy!2

12lxy~]xux!~]yuy!12~m2g!~]xuy!~]yux!#,

~4.26!

where we dropped the prime on the rescaled coordinates
defined elastic constants

Kx[ABxxByx, ~4.27a!

cx[KxKxy /Bxx , ~4.27b!

cy[KxKyy /Byx . ~4.27c!

Because in the presence of dislocations the displacem
field ux is a multivalued function, it is essential to distinguis
the last two terms in Eq.~4.26!. In contrast to conventiona
elastic theory, where dislocations are bound andux is a well-
defined function, here these termscannotbe transformed into
each other by an integration by parts. Keeping track of t
distinction ensures the proper form for the elastic consta
of the resulting smectic phase.

In this new rescaled coordinate system, a type I dislo
tion located at the origin, with a Burgers vectorb5bnW x̂, can
be represented by a displacement field

us5 x̂
bnW

2p
tan21S y

xD . ~4.28!

However, in contrast to the analysis of the melting of the
phase above, in the presence of a finite]yuy deformation, the
form of type I dislocation given in Eq.~4.28! does not cor-
respond to a relaxedux displacement which minimizes th
energy. Consequently, we expect@see Eq.~4.34!# a bilinear
coupling between the dislocation density and theuy distor-
03150
,

x-
ly

n

l-

l

st

nd

nt

is
ts

-

tion. For a finite density of dislocations, we define a singu
strain vs[“ux

s due to a dislocation densityb(r ), with the
standard relation

“3vs5êzb~r !, ~4.29!

5êz(
r i

bnWnr i
d (2)~r2r i !, ~4.30!

[êzbnWn~r !, ~4.31!

where$nr i
% are integer dislocation charges. A general so

tion to the above equation is given~in Fourier space! by

vs~q!5
iq3êz

q2
b~q!1 iqx~q!, ~4.32!

wherex(q) is an arbitrary, single-valued function, which fo
convenience and without loss of generality we can set
zero. After expressing the gradient of the total displacem
field ut in terms of the dislocation partvs and a single valued
phonon fieldu

“ux
t 5vs1“ux , ~4.33a!

“uy
t 5“uy ; ~4.33b!

inserting this intoHFS, we obtain a Hamiltonian that in
cludes both the elastic and dislocation degrees of freedo

HFSd5
1

2 E d2q

~2p!2 H 2bnW

q2
@lxyqy

21~g2m!qx
2#n~q!uy~2q!

1bnW
2Kx

un~q!u2

q2 J 1HFS@u#. ~4.34!

After putting the system on the lattice, going to the gra
canonical ensemble for dislocations, and adding the dislo
tion core energyEc to account for the energy coming from
short length scales~not included in the above analysis! the
total partition function is given by

Z5E @du#(
$nr %

e2HFSd2(
r

Ecnr
2
. ~4.35!

In the above, for convenience, we chose to measure all
energies in units ofkBT.

To analyze the dislocation unbinding transition, it is co
venient to perform a duality transformation on the abo
HamiltonianHFSd @42,8#. To do this we introduce an auxil
iary Gaussian fieldf to decouple the Coulomb interactio
between dislocations, and use the Poisson summation
mula to perform the summation over the set of lattice in
gers$nr%, obtaining

Z5E @df#@du#e2Hd, ~4.36!

where
3-21
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Hd5E d2r H Kx
21

2
u“fu22VV@bnW~f1 iu!#J 1HFS@u#.

~4.37!

To obtainHd @Eq. ~4.37!#, above, we defined a fieldu(r ),
whose Fourier transform is given by

u~q!5
1

q2 @lxyqy
21~g2m!qx

2#uy~q!, ~4.38!

and usedVV(f) to denote the well-known 2p-periodic Vil-
lain potential defined by

e2VV(f)5 (
n52`

`

e2Ecn21 inf. ~4.39!

At low fugacity ~large core energy!, this potential reduces to
a cosine function, leading to

Hd5E d2r H Kx
21

2
u“fu22g cos@bnW~f1 iu!#J 1HFS@u#,

~4.40!

with g[2e2Ec.
Now the dislocation unbinding transition in the origin

model of the floating solid is determined by the vanishing
the RG eigenvalue ofg( l ) cosine nonlinearity in this dua
model, defined by

g~ l !5ge(22hg/2)l , ~4.41!
li

,
s
t

03150
f

wherehg is determined by

hgl 5bnW
2@^f2&.2^u2&.#, ~4.42!

with the right-hand side easily computed from the quadra
part of the dual HamiltonianHd @Eq. ~4.37!#. Specifically,

^f2&.5KxE
.

d2q

~2p!2

1

q2 ~4.43!

5
ABxxByx

2p
l ~4.44!

and

^u2&.5E
.

d2q

~2p!2

@lxyqy
21~g2m!qx

2#2

q4
^uuy~q!u2& ~4.45a!

5E
.

d2q

~2p!2

lxy
2 qy

412lxy~g2m!qy
2qx

21~g2m!2qx
4

q4@cxqx
21cyqy

22d2qx
2qy

2/~Kxq
2!#

~4.45b!

5
lxy

2 c21lxy~g2m!c31~g2m!2c4

2pAKyyKxy

l

~4.45c!

where
c2[E
0

2p du

2p

ay
2sin4u

@ax1~ay2ax!sin2u#@ax1~ay2ax2axy!sin2u1axysin4u#
, ~4.46a!

c3[E
0

2p du

2p

2axy
2 cos2u sin2u

@ax1~ay2ax!sin2u#@ax1~ay2ax2axy!sin2u1axysin4u#
, ~4.46b!

c4[E
0

2p du

2p

ax
2cos4u

@ax1~ay2ax!sin2u#@ax1~ay2ax2axy!sin2u1axysin4u#
. ~4.46c!
rs,
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e-
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Upon combining these results, we find that a floating so
phase melts into a floating smectic phase at

TFS-FSm5
bnW

2

8p S ABxxByx2
lxy

2 c21lxy~g2m!c31~g2m!2c4

AKyyKxy
D ,

~4.47!

which reduces to the melting temperatureTLFS-LSm @Eq.
~4.23!# of the LFS phase in the limitKxy ,Kyy→`, in which
the spectator phononuy mode is frozen out. Not surprisingly
we find that the extrauy fluctuations of the FS phase alway
suppressthe melting temperature of the FS phase relative
d

o

that of the LFS phase, i.e., for all range of paramete
TFS-FSm,TLFS-LSm.

We now demonstrate that once type I dislocations unbi
the resulting Hamiltonian is that of a floating smectic, d
scribed by the HamiltonianHFSm, given in Eq.~3.35!. To
see this return to the HamiltonianHFSd @Eq. ~4.34!#, and note
that once dislocations unbind and therefore appear in la
densities, the discrete dislocation fieldnr can, to a good ap-
proximation, be treated as a continuous densityn(r ). Within
this Debye-Hu¨ckel approximation the dislocation degrees
freedom can be easily integrated out of the partition funct
@Eq. ~4.35!# by replacing the summation overnr in Z by an
integration. Simple Gaussian integrations over dislocat
3-22
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densityn(r ) and the single valued fieldux then lead, in the
long wavelength limit, to an effective floating smect
Hamiltonian

HSm5
1

2 E d2r $k~]x
2uy!21Bxy~]xuy!21Byy~]yuy!2%,

~4.48!

where we have restored the original scaling of the spa
coordinates@Eqs. ~4.25!#, and derived the effective elasti
constants for the resulting FSm phase:

k5
~m2g!2

~m1g2a!2 S 2Ec

bnW
2 D , ~4.49a!

Bxy5
4mg2a2

m1g2a
, ~4.49b!

Byy5lyy2
lxy

2

lxx
. ~4.49c!

We note thatBxy vanishes asg,a→0, as it must in this
rotationally invariant limit, in which one must recover th
rotationally invariant 2D liquid crystal smectic elastici
@39#.

Another equivalent but considerably more straightforwa
way to obtain the smectic Hamiltonian is to note that in t
presence of unbound type I dislocations“ux

t @Eq. ~4.33a!#
contains both the longitudinal and transverse compone
and therefore, despite its appearance, it is no longer a
servative vector constrained to be a gradient of a sin
valued function. This observation allows us to incorpor
unbound type I dislocations into the HamiltonianHel @Eq.
~2.25!#, by the replacement

“ux→v, ~4.50!

with v an arbitrary 2D vector field. Under this substitutio
Hel , Eq. ~2.25! transforms into

HFSd5E d2r H m

2
~]xuy1vy!21

lxx

2
vx

21
lyy

2
~]yuy!2

1lxyvx]yuy1
a

2
@~]xuy!22vy

2#1
g

2
~]xuy2vy!2J .

~4.51!

After performing a simple Gaussian integration over the t
independent components ofv, we immediately obtain a
Hamiltonian for the floating smectic phase, which in the lo
wavelength limit agrees in form and with the expressions
the elastic constantsBxy and Byy , obtained in Eqs.~4.48!
and ~4.49!.

V. SHAPE OF THE MELTING CURVE

A. Strong pinning limit and reentrant melting

One of the most interesting observations in the colloi
experiments by Weiet al. @22#, which in fact stimulated our
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interest in this problem, is the light-inducedreentrantmelt-
ing. As we shall explicitly demonstrate, this melting ree
trance is agenericconsequence of short-ranged screened c
loidal interactions and thermal fluctuations, and hence sho
be prevalent in such 2D systems.

To demonstrate the reentrance as a function of laser
tensity, we study the shape of the melting curves for
LFS-ML, LFS-LSm, and FS-FSm phase transitions, wh
we generally denote byTm(UK). The common feature o
these transitions is that they are all driven by the unbind
of type I dislocations, withTm(UK) @see Eqs.~4.23! and
~4.47!# at least in part determined by the renormalized valu
of the bulk modulusBxx for compression along the trough
and the corresponding shear modulusByx . Our goal then is
to determine how these moduli depend on the potential
plitude UK .

We first note that these melting boundariesTm(UK) are
constrained by their limiting values

Tm~0!5
bnW

2

4p

m~m1l!

2m1l
, ~5.1a!

Tm~`!5
bnW

2

8p
Am~2m1l!, ~5.1b!

whereTm(0) is the well-known result in the absence of a
external potential@4–6#. In the opposite limit ofinfinite po-
tential strength,Tm(`) is given by Eq.~4.23!, with Bxx(UK
→`)'2m1l and Byx(UK→`)'m. These results follow
from comparingHLFS @Eq. ~3.20!#, with H0 @Eq. ~2.4!#, after
freezing out theuy degree of freedom (uy50) in H0, as is
appropriate in thisUK→` limit. Although in general there is
no universal relation betweenTm(0) andTm(`), in a dilute
colloidal limit, relevant to the experiments of Weiet al. @22#,
the two Lame´ coefficients are equal,m'l, and Eqs.~5.1!
reduce to

Tm
dil~0!5m

bnW
2

6p
, ~5.2a!

Tm
dil~`!5A3m

bnW
2

8p
~5.2b!

'1.3Tm
dil~0!. ~5.2c!

One might have expected that the melting temperat
would simply increase monotonically withUK from Tm(0)
to Tm(`). However, as we will now show explicitly, the
uy-mode thermal fluctuations, enhanced as the periodic
tential is lowered from infinity, generically increase the
melting temperature forka@1. Consequently, the melting
3-23
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curveTm(UK) must have a maximum in this limit, implying
reentrant melting for a band of temperatures as a functio
the potential amplitude.

The origin of the reentrance effect can be understood o
heursitic level as follows. Clearly, atsmall UK , we expect
that the increase in the strength of the periodic potential s
presses thermal fluctuations inuy , thereby lowering the en
tropy of the liquid~or the smectic! state, and therefore mak
ing freezing into a lattice free-energetically less costly. T
naturally leads to anincreaseof Tm(UK) with UK at low
laser intensities. However, for potential strengthsUK@kBT,
this entropic contribution to the free energy becomes un
portant. In this largeUK limit, the behavior ofTm(UK) is
dominated by a different mechanism having to do with
reduction of the elastic constants with increasingUK and
decreasing temperature. To see this, note that the effe
shear modulusByx(UK) which entersTm(UK) @see Eqs.
~4.23! and ~4.47!#, is determined by the screened Coulom
interactionV(r )5V0exp(2kr)/r between colloidal particles
in neighboring troughs. In order to find an effective she
modulus for theux modes, one needs to integrate out t
massive modes corresponding to displacements perpen
lar to the troughs of the laser potential. This will be the rou
taken further below. Heuristically, one should obtain roug
the same result by assuming that the dominant effect co
from the shear modulusBxy and simply averaging the poten
tial over the massiveuy degrees of freedom, which yields

Byx~UK!;^e2kurn112rnu&uy
, ~5.3!

wherern andrn11 are positions of nearest neighbor colloid
particles belonging to thenth andn11st Bragg planes, run
ning parallel to the laser potential troughs. This gives to lo
est harmonic order in the fluctuationsuy ,

Byx~UK!;^e2ka2k[uy(n11)2uy(n)]&

;e2kaek2^uy
2&

'Byx~`!eckBT/UK, ~5.4!

with c a dimensionless number of order 1. Such a therm
enhancementof the effective shear modulusByx(UK), which
decreases as thermal fluctuations inuy are suppressed b
increasingUK , is easy to understand: Even though, in t
presence ofuy fluctuations colloidal particles in neighborin
troughs spend as much time closer together as further a
because of the concave form of the interaction potential
enhancement of the effective shear modulus is larger f
particles being closer together than the corresponding
pression when they are further apart.

The above simple physical argument for reentrance
supported by detailed microscopic lattice calculations
which we computeboth the effective shearByx(UK) and
bulk Bxx(UK) moduli. To do this we start with a microscop
model with a screened repulsive Coulomb interactionV(r )
5V0exp(2kr)/r, where the screening lengthk21 is typically
much smaller thana, andV0 depends on the dielectric con
stant,k and the sphere radius@22#. Upon integrating out the
03150
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uy modes using the screened Coulomb potential to lead
order in kBT/UK , the calculation in Appendix B gives@for
orientationpW 5(1,0)]

Byx~UK!'Byx~`!H 11
9~ka!2

64p2 S 11
17

3kaD kBT

p2UK
J , ~5.5!

Bxx~UK!'Bxx~`!H 11
~ka!2

64p2 S 128v2
231104v

3ka D kBT

p2UK
J ,

~5.6!

where v5V0e2ka/kBT, Byx(`)5 3
8 vkBTk2, and Bxx(`)

53m. Lowering the potential strengthUK always increases
the shear modulus, whereas the behavior of the comp
sional modulus depends on the magnitude ofv and ka.
When combined with Eq.~4.23!, these expressions impl
that the melting temperature increases with decreasingUK
for ka*5.6 ~in Ref. @22#, ka'10),

TLFS-LSm~UK!5TLFS-LSm
` H 11

5@~ka!2231#

64p2 S 11
13

3kaD
3

kBTLFS-LSm
`

p2UK
J , ~5.7!

thus implying reentrant melting for a band of temperatures
a function of potential strength observed in experiments
illustrated in Figs. 2, 4, and 5. Clearly given the depende
of the TFS-FSmon the elastic moduli@Eq. ~4.47!#, we expect
the FS-FSm phase transition to display reentrance, altho
quantitative predictions of the size of the reentrant band
much more difficult.

In obtaining Eq.~5.7!, we have clearly ignored additiona
renormalization of the effective elastic constants by phon
nonlinearities and by bound dislocation pairs, which need
be taken into account for a more precise estimate of
phase boundary. Based on the general structure of Koste
Thouless-like RG flows, the latter renormalizations gene
cally reduce the elastic moduli, and therefore drive the m
ing temperature down. Sinceuy mode fluctuations, and
therefore the renormalizations that they induce, are s
pressed by the increasing periodic potential, we expect
Tm(UK) experiences a larger reduction at smallUK than at
largeUK . The known values for the potential-free 2D me
ing and the 2DXY model downward renormalization con
strain the extremeUK50 andUK→` ends of the melting
curve. Furthermore, since thermal downward renormali
tion of elastic constants is obviously enhanced with incre
ing temperature, we expect the suppression of the mel
temperature due to these effects to be most pronounced
the maximum inTm(UK). Clearly, such aUK-dependent
downward renormalization of the elastic constants will g
nerically tend to reduce the range of temperatures over wh
there is laser-induced reentrant melting. However, these
fects are small@47#, and we therefore expect reentrant me
ing to persist even in their presence.
3-24
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B. Weak pinning: Universal shape of the melting curve
at small potential strength

In addition to a maximum displayed by the melting cur
as a function of laser intensity, we also find that the shap
the melting temperature is universal in the limit of a vanis
ing periodic potential strengthUK . This can be seen mos
easily from the RG scaling theory applied to the potent
free critical point. More specifically, consider the behavior
the translational correlation lengthj(t,UK) above the melt-
ing transition as a function ofUK and the reduced tempera
ture t[@T2Tm(UK50)#/Tm(UK50). The power of the
renormalization group transformation is that it allows us
relate a difficult calculation very close to the transitio
where fluctuations are large and perturbation theory is div
gent, to a calculation outside of the critical region, whe
perturbation theory is convergent. Applying this idea to t
computation ofj(t,UK) we find

j~ t,UK!5b* j~ t~b* !,UKb
*
lK!, ~5.8a!

5ec/t n̄j~1,UKeclK /t n̄ !, ~5.8b!

where we have chosen the RG rescaling parameterb* such
that the rescaled reduced temperaturet(b* ), given by the
RG flow equations of Halperin and Nelson@5#, is of order
unity:

t~b* !51. ~5.9!

lK522hK/2 is the renormalization group eigenvalue of t
1D periodic potentialUK . At the primary potential-free fixed
point with UK50, we recover the well-known@5# exponen-
tial growth of the correlation lengthj(t,UK50), with the
exponentn̄ given by

n̄'0.36963, ~5.10!

where an overbar denotes critical exponents at this fi
point.

The primary critical behavior is unstable for arbitrari
small UK . Hence, sufficiently close to the melting temper
tureTm(0), theperiodic potential always becomes importa
This is the case even for the melting of the FS phase, wh
it leads to a marginal crossover from a fixed line of isotro
rotationally invariant elasticity to the fixed line character
ing elasticity given by Eq.~2.25!, where the rotational sym
metry isexplicitly broken byUK . There, despite the fact tha
the periodic potential is irrelevant for the translational ord
parameter, it is always important for the orientational d
grees of freedom, since~see Sec. II C! it explicitly breaks
orientational symmetry.

In locked phases it is clear, from Eq.~5.8b!, that for a
given smallUK , the effects of this weak periodic potenti
will be felt at Tm(UK).Tm(0), such that theUK-dependent
argument on the right hand side of Eq.~5.8b! is large, i.e.,
grows beyond orderTm :

UK'kBTme2clK /tm
n̄
. ~5.11!
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This then predicts auniversal cuspfor the melting curve
Tm(UK) in the limit UK→0 in any phase in whichlK.0,
i.e., the periodic potential is relevant and the phase is lock
andTm(UK) given by

Tm~UK!;Tm~0!$11lK@ ln~kBTm /UK!#21/n̄%, ~5.12!

as depicted in Figs. 2, 4, and 5. Forfloating phases, such a
the FS and FSm phases, where the periodic potential is i
evant~in the RG sense!, we expect the convergent perturb
tion theory inUK to lead to a melting temperatureTm(UK)
that instead growslinearly with UK .

VI. RESPONSE OF THE TRANSLATION
AND HEXATIC ORDER PARAMETER

TO AN EXTERNAL POTENTIAL

In this section we use a renormalization group scal
analysis to determine the response of the translational o
parameterMK5^rK& and the bond orientational order pa
rameterc65^e6iu(r )& to the amplitudeUK of the external
laser potential. In the absence of an external potential,UK
50, there are only algebraic peaks in the static struct
function of the crystalline phase, and the translational or
parameterMK[^rK& vanishes like

MK;L2h̄K /2→0 ~6.1!

as the system sizeL→`, where

h̄K5
kBT

4p

3m1l

m~2m1l!
K2 ~6.2!

is the critical exponent of the potential-free case@5#. For
small values of the external potentialUK we can use standar
crossover scaling analysis to determine how the translatio
order parameter depends on the amplitude of the laser po
tial. We start from the scaling behavior of the free ener
density under a renormalization group transformation

f ~UK ,T!5e22l f @elK lUK ,T~ l !#, ~6.3!

where lK is the renormalization group eigenvalue for th
periodic potential, andT( l ) is the renormalized temperatur
which characterizes the crystalline phase. Since in the
energy density the laser potentialUK couples linearly torG ,
we have

MK52
]

]UK
f ~UK ,T!, ~6.4!

and dimensional analysis tells us that the exponent of
correlation function̂ rK(r )rK

! (0)&;r 2h̄K is related tolK by

lK522 1
2 h̄K , ~6.5!

a result consistent with standard perturbative calculation
lK . Hence we obtain the following scaling relation for th
translational order parameter
3-25
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MK~UK ,T!5e2(1/2)h̄K lMK@e(22h̄K /2)lUK ,T~ l !#, ~6.6!

where we expectT( l ) to approach a finite value asl→`.
Upon choosingl 5 l * , such thate(22h̄K /2)l

* UK5ma2, i.e., is
comparable to the elastic energy for deformation at the
tice cutoff a, we obtain

MK~UK ,T!;uUKu h̄K /(42h̄K). ~6.7!

For h̄K.2, MK vanishes linearly withUK , with a singular
correction. In contrast,MK should always vanishlinearly
with UK in the liquid and hexatic@11,12# phases of the un
perturbed colloid.

The laser potential will also induce long-range bond o
entational order inc65^e6iu(r )& @48#. Along similar lines as
above, one can show that the bond order parameterc6 van-
ishes linearly withUK in the liquid, vanishes like a power o
UK in the hexatic phase

c6;uUKu6h̄6 /(42h̄6), ~6.8!

whereh̄6 is the exponent describing the algebraic decay
bond order, and approaches a nonzero constant asUK→0 in
the solid phase@26#.

VII. DISCUSSION AND EXPERIMENTAL IMPLICATIONS

A. Melting temperatures and critical commensurability
ratios in the dilute limit

One of the interesting predictions of our work is that t
LFS-ML, LFS-LSm, and FS-FSm phase transitions are
mediated by the unbinding of type I dislocations with Bu
gers vectors parallel to the troughs of the external poten
b5bnW x̂. Consequently, depending on the choice of relat
orientation, the periodic potential can be used to supress
unbinding of a set of dislocations that would otherwise u
bind in a ‘‘substrate’’-free experiments. For example, in t
dual-primary orientation shown in Fig. 17, allsix fundamen-
tal Burgers vectors are confined by a linear potential a
therefore cannot unbind entropically. It is therefore the u
binding of non-fundamental dislocations with Burgers vec
of chargeA3a, illustrated in Fig. 17, that will control the
melting transition.

FIG. 17. Triangular lattice with a lattice constanta subject to a
periodic potential~maxima indicated by dashed lines! for a dual-
primary orientationpW 5(1,1) with pd5a8, wherea85a/2 is the
Bragg plane spacing, and the commensurability ratio isp51. Also
shown is the low energy dislocation, with the Burgers vectob
parallel to the corrugation of the potential.
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In general, the magnitudebnW
25a2(n1

21n2
21n1n2) of the

lowest energy Burgers vector and hence the melting te
peratureTm}bnW

2 depends strongly on the relative orientatio
between the 2D solid and the laser potential, e.g., forn2

51 andn150, 1, 2, and 3 one findsbnW
2/a251, 3, 7, and 13.

In particular, if one keeps the mean particle spacinga ~i.e.,
the density! and the potential strength fixed and reduces
spacingd between the laser troughs~by, e.g., varying the
angle between the two interfering laser beams! d→d/A3
such that one goes from preferred primary lattice orientat
@nW A5(1,0)# to preferred secondary primary lattice orient
tion @nW B5(1,1)# the melting temperature should increase
a factor of 3@see the vertical arrow in Fig. 18~a!#. This ap-
pears to be consistent with preliminary data of Bechin
et al. @49#. They find that for exactly such a change in trou
spacing the onset of light induced freezing atfixed tempera-
ture is shifted to smaller laser intensities also by roughly
factor of 3 @see the horizontal arrow in Fig. 18~a!#.

More detailed experimental studies ofTm(UK) for various
commensurate orientations and trough spacings wo
clearly be desirable in order to systemmatically test our p
dictions for the orientation dependence of the melting tr
sition temperature for the LIF phase. In performing su
studies one must keep in mind considerable irreversibi
effects that are expected to plague ‘‘zero-laser-field’’ coo
experiments. In order to avoid dealing with long equilibr
tion times, one would need to warm up into the liquid sta
change the laser potential periodd and only then ‘‘field
cool’’ back into the solid.

FIG. 18. ~a! Schematicp51 phase diagram as a function o
potential strengthUK and relative orientation between the laser p
tential and the 2D solid; a change in orientation from (1,0) to (1
is generated by keeping the particle density~and hence the mean
particle spacinga) fixed, and varying the distanced between the
minima of the external potential.~b! Schematicp51 phase diagram
for lattice spacingd vs potential strengthUK at fixed temperatureT
and fixed colloidal density; incommensurability effects are dis
garded.
3-26
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Since trough spacingd ~controlled by the angle betwee
the interfering laser beams! and laser intensity appear to b
convenient experimentally tunable parameters, it is valua
to derive the shape of the melting curve in thed-UK plane
~for a given temperature and a fixed density of colloidal p
ticles!. However, since an arbitrary value ofd will in general
not be commensurate with the spacing between a partic
fixed set of Bragg planes, a detailed study of incommen
rate potentials would need to be done in order to fully u
derstand the behavior as a function of trough spacingd. We
hope to discuss some of the ensuing physics in a forthcom
publication@27#. However, for the following we would like
to restrict ourselves to values ofd which are commensurate
Hence, strictly speaking, our results will not be valid for
continuous set of layer spacings but only for a discrete co
mensurate subset of values. With this precaution in mind
expect the melting curve~for a given temperature and pa
ticle density! in thed-UK plane to have the shape illustrate
in Fig. 18~b!. We note that in the LIF regime the critica
potential strength for melting decreases with decreasing
tance between the laser fringes, whereas in the LIM reg
the critical potential strength increases as the interfere
fringes become narrower.

Let us now specialize to the dilute limitka@1, relevant
to the experiments of Weiet al. @22#. Then the two Lame´
coefficients~characterizing the continuum elastic theory
the hexagonal crystal in the absence of a laser poten!
become equal,m'l, and the melting temperature for th
LFS phase reduces to

Tm
0 5m

bnW
2

6p
, ~7.1!

Tm
`5A3m

bnW
2

8p
'1.3Tm

0 ~7.2!

in the limit of zero and infinite potentials, respectively. F
small values of the commensurability ratio,p,pc , the LFS
phase melts into a modulated liquid phase or a locked sm
tic phase. If p.pc , a floating solid phase with two sof
phonon modes can intervene between the LFS phase a
modulated liquid or floating smectic phase. As discussed
Sec. IV A, the transition from the LFS into the intermedia
FS phase is in a roughening universality class where the l
potential becomes irrelevant. In the dilute limit~and neglect-
ing effects of the periodic potential on the elastic coe
cients! the corresponding critical temperature is apro
mately

TpS
dil5

3

p
md2, ~7.3!

where d5a8/p with a85A3a/(2An1
21n2

21n1n2) the dis-
tance between the Bragg planes parallel to the troughs o
laser potential. Upon combining Eq.~7.3! with Eq. ~7.1!, the
critical commensurability ratio reads
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pc
dil53A3

2

1

n1
21n2

21n1n2

. ~7.4!

Note that only for the primary (pc
dil53A3/2'3.7) and dual-

primary (pc
dil5A3/2'1.2) orientations is this critical value

larger than 1. For any other orientationpc is less than 1 and
hence we expect that there will always be an interven
floating solid phase. A configuration withnW 5(2,1) ~also see
Fig. 10!, and hencepc5(3/7)A3/2'0.5 is likely to be within
the range of parameters accessible to experiments with
loidal particles.

For p.pc there is a roughening transition from a locke
floating solid into a uniaxially anisotropic floating solid de
scribed byHel @Eq. ~2.25!#, which subsequently melts~by
unbinding of type I dislocations! into either a modulated liq-
uid phase or a floating smectic phase. Since the melting
the roughening transition for a locked smectic phase
given by TmSm5(1/8p)Ba2 and TpSm5(2/p)Bd2, respec-
tively, whereB5ABxyByy anda is the smectic layer spacing
there exists auniversalcommensurability ratiopc854 @42#
above which a floating smectic phase intervenes betwee
locked smectic phase or a floating solid phase and the mo
lated liquid phase. This universal valuepc854 should be con-
trasted with the nonuniversal critical commensurability ra
pc for the existence of the floating solid phase, which d
pends on the relative magnitude of the elastic constants
strongly on the relative orientation between the colloidal l
tice and the 1D periodic potential. Current experiments fi
it difficult to access large commensurability ratiosp. We
hope that our theoretical results will inspire experimentali
to overcome present obstacles and map out the rich p
diagram shown in Fig. 5.

B. Phase diagrams as a function of the Debye screening lengt

Recent Monte Carlo simulation studies of melting in t
presence of a 1D periodic external potential explored
phase diagram in the parameter space ofUK /kBT and ka
with particle density and temperature fixed@19,20#. Although
one might question whether such simulations are in equi
rium with respect to dislocation climb~or even glide!, it is
important to tabulate the predictions of our defect-media
melting theory in this parameter space in order to be able
compare with the results of these simulations. In addition
also seems to be more feasable experimentally to map
the phase diagram as a function of potential strength
particle density.

Adapting our results from Sec. V, we find the followin
behavior. Since the melting temperature is proportional
the elastic moduli, which in turn are proportional to the p
tential strength, forka@1 we expectTm to display the fol-
lowing dependence on the screening lengthTm}(ka)2e2ka.
As an immediate consequence one obtains~in the dilute
limit ! the following implicit equation@also see Eqs.~7.1! and
~7.2!#:
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~km
`2km

0 !a'2 lnS 1.3
km

`

km
0 D .0. ~7.5!

In particular this implies that the difference in the critic
values of the inverse screening length at infinite and z
potential strength,km

` andkm
0 , is positive. In the limitkm

0 a
@1, Eq. ~7.5! reduces to (km

`2km
0 )a'2ln 1.3'0.52. The

full solution of Eq.~7.5!, together with the asymptotic resul
is shown in Fig. 19. We find Eq. 7.5 to be consistent w
experimental results@49#. It would be interesting to test ex
perimentally the functional dependence ofkm

` on km
0 ~Fig.

19! predicted here.
The results of Monte Carlo simulations appear to disag

with experiments, and with our predictions from th
dislocation-mediated melting theory when compared
large values of the potential strength. Whereas we findkm

`

.km
0 , the simulations reported in Ref.@19# show quite the

opposite. More recent simulations from the same group@20#
seem to refute these earlier results and find, in agreem
with our theory, km

`2km
0 .0. Their numerical value for

(k m
` 2km

0 )a'1.32 is, however, more than two times larg
than our asymptotic prediction of 0.52. However, beca
Eq. ~7.5! neglects finite renormalization of elastic consta
by dislocation dipoles and nonlinear elastic effects, our p
diction is an estimate, only accurate upto unknown factors
order 1.

Next we discuss reentrance in theUK /kBT-kma phase
diagram. Upon rewriting Eq.~5.7!, we find

UK

kBT
5

a~kma!

T/Tm
`~kma!21

, ~7.6!

with

a~kma!5
5@~k ma!2231#

64p2 S 11
13

3kmaD . ~7.7!

Hence if km
0 a and km

`a are both smaller than the critica
value 5.6 for the existence of reentrance, we expect (kma)21

to be a monotonically decreasing function of the poten

FIG. 19. Difference betweenkma at infinite and zero potentia
strength as a function ofkm

0 a. The vertical dashed line gives th
asymptotic value 2 ln 1.3'0.52 for very largekm

0 a.
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strength, as shown by the dashed line in Fig. 20. Ifkm
0 a and

km
`a are both larger than the critical value 5.6, we exp

reentrant behavior such that with increasing poten
strength (kma)21 first decreases and reaches a minimu
(km

mina)21,(km
`a)21 before it approaches (km

`a)21 as an
inverse power ofUK according to Eq.~7.6! ~see Fig. 20!.
This reentrant behavior is consistent with results from
periments of the Konstanz group@22,49# ~see the dashed
arrow in Fig. 20, which describes a typical experimen
path!. It is also similar to what one finds in simulations@19#
at small values of the potential strength. However, there
significant differences. First of all, the type of transition
very different. Whereas we discuss a continuous disloca
mediated melting transition, simulations appear to find
first-order transition. Second, as discussed above, the s
lations showkm

`,km
0 , which is opposite to what our theor

predicts. In more recent simulations@20# kma is found to
increase monotonically with potential strength with no si
for reentrance. This is opposite to what was found in
earlier simulations by the same group@19#.

In summary, we find that our theoretical results are co
sistent with recent experiments and raise strong doubts
the validity of the Monte Carlo results to date on melting
a 1D periodic potential. This latter failure of simulations
not completely surprising given difficulties of numeric
methods on even larger systems to resolved the nature o
melting evenwithout an external potential@21#.

C. Static structure factor and pair correlation function

The quantity that is most directly observed in many e
periments on colloidal systems and related simulations is
pair correlation function, defined by

g~r !5
V

N2 (
i j

8 ^d@r2~r i2r j !#&, ~7.8!

where the double sum is overN particles but excludes the
diagonal terms wherei 5 j . It is related to the static structur
factor by

g~r !5
1

NE d2q

2p
eiq•rS~q!. ~7.9!

FIG. 20. Schematicp51 phase diagram as a function of pote
tial strengthUK and inverse Debye screening lengthk. Solid and
dashed curves represent the melting curves for values ofk larger or
smaller, respectively, than the critical value ofkcrit a'5.6.
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Neglecting the smooth part of the structure factor and tak
into account only the center column of Bragg peaks and
two neighboring columns of quasi-Bragg peaks w
hGA,x

(Tm
2)51/4 andhGB,x

(Tm
2)51, respectively, for the pai

correlation function one finds

g~r !215(
G1

CG1
cos~G1•r !1r 2hGA,x(

GA

CGA
cos~GA•r !

1r 2hGB,x(
GB

CGB
cos~GB•r !, ~7.10!

where hGa,x
are the exponents characteristic for the L

phase. Note also that according to Eq.~1.13! these exponents
only depend on thex component of the reciprocal lattic
vectorGa . The amplitudesCGa

are proportional to the am

plitudes of the corresponding Bragg peaksG15(2p/a8)êy ,
and quasi-Bragg peaks,GA andGB , with GA,x5Gx

052p/a
andGB,x52Gx

0 @see Eqs.~3.32a! and ~3.33b!#.
For r i x̂, i.e., looking parallel to the minima of the trough

the sum over the Bragg peaks yields a constant. This sim
reflects the effect of the laser potential to induce a perio
modulation of the colloidal particle density with a high
density in the minima of the troughs. Note that this trivia
implies that the pair correlation function doesnot approach
unity asx→` if g(x) is normalized with respect to the mea
density. Since the amplitudes for the quasi-Bragg peaks
cay as a power law in the strength of the laser potential w
an exponent proportional toh̄Gy

a reasonable approximatio
for the pair correlation function reads

g~x!215const1gAcos~Gx
0x!x2hGA,x1gBcos~2Gx

0x!x2hGB,x.
~7.11!

The relative magnitude of the amplitudesgA andgB depends
on the strength of the laser potential. WhereasgB is indepen-
dent ofUK ~note that the leading quasi Bragg-peak contr
uting to gB has GB,y50), gA vanishes as a nontrivia
T-dependent power law inUK for UK /ma2!1 @see Eq.
~3.32b!#, increasing the weight of thex2hGA,x term with in-

FIG. 21. Algebraic part of the static structure factor forr5 x̂,
i.e., looking parallel to the troughs of the laser potential. There
two oscillating contributions, both of which decay algebraically
zero.
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creasing potential strength. This prediction should be acc
sible to experimental verification. Note that the depende
of the amplitudegA on the potential strength may lead
UK-dependent effective exponents when one tries to inc
rectly fit the experimental data by a single power law. F
illustration, Fig. 21 showsg(x)21 for a special case, wher
const50, gA5gB51, hGA,x

5 1
4 , and hGB,x

51, and all

length are measured in units ofa. Due to the superposition o
the two harmonics with different power law amplitudes t
minima are much broader than the maxima of the struct
factor, a feature which appears to be present in the dat
Ref. @22#.

For r i ŷ, i.e., looking perpendicular to the minima of th
troughs, we obtain,

g~y!215const8cos~2Gy
0y!1gA8cos~Gy

0y!y2hGA,x1gB8y2hGB,x

~7.12!

with Gy
052p/A3a. Hence on top of the periodic densit

modulation due to the laser potential we again have an a
braic decay from the closest Bragg peaks. For illustrati
Fig. 22 shows the algebraic part of the static structure fac
f (x)5y21/4cos(2py/A3)1y21, where we have again chose
the amplitudes to be equal and theh exponents equal to thei
values at the melting temperature,hGA,x

5 1
4 andhGB,x

51. If
one would try to fit the envelope of this function in th
regime shown in the graph using a single power law, o
would find an exponent of 1/2. Hence caution must be ex
cised in the analysis of the experimental data, and it is
sential to take into account both leading and sublead
quasi-Bragg peaks.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge helpful discussions w
B. I. Halperin and J. Toner. We also thank C. Bechinger,
Brunner, and P. Leiderer, and C.-H. Sow and C. M. Murr

e

FIG. 22. Algebraic part of the static structure factor forr5 ŷ,
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APPENDIX A: VARIATIONAL THEORY
OF THE 2D MELTING TRANSITION

IN THE PRESENCE OF A 1D PERIODIC POTENTIAL

In this appendix we study the freezing transition of t
modulated liquid in the limit of a strong periodic potential.
such limit the colloidal particles are tightly confined to th
troughs of the 1D periodic potential, and our system redu
to a weakly coupled array of 1D colloidal liquids. The lo
energy degrees of freedom of the resulting system are
well characterized by a scalar fieldun(x) describing particle
displacements along thenth trough and an effective Hamil
tonian

H5(
n
E dxH 1

2
BS dfn

dx D 2

2g cos@fn11~x!2fn~x!#J ,

~A1!

where for simplicity of notation we have defined resca
phonon fieldfn(x) and elastic couplingsB andg related to
those defined in Sec. I through

fn~x!5
2p

a
un~x!, ~A2a!

B5KdS a

2p D 2

, ~A2b!

g5mdS a

2pdD 2

. ~A2c!

In Sec. I we used simple qualitative arguments to estim
the colloidal freezing transition temperature. Here we wo
like to treat this model quantitatively and in more deta
Unfortunately, however, as can be seen from a stand
renormalization group analysis,weak coupling g is always
irrelevant at long scales, with the effective couplingg(jx)
vanishing at length scalejx as

g~jx!5gS jx

a De2const(kBT/B)jx. ~A3!

Thermal fluctuations, which are especially strong in one
mension, are responsible for this effective decoupling of
colloidal system into effectively independent on
dimensional liquids. This precludes a description of t
freezing transition in weak~g! coupling starting from this
model. There are two alternatives: One is to study of
melting transition from a complementary strong couplin
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fully elastic model with topological defects~dislocations!, an
approach which lends itself to a rigorous treatment that
undertake in the main part of the paper. Alternatively,
approximate, variational treatment of the model@Eq. ~A1!# is
possible, and will be presented in this appendix.

The idea behind a variational approach of a problem
that an approximate free energy

F̃5^H2Hv&v1Fv ~A4!

is anupper boundfor the exact free energyF corresponding
to the HamiltonianH of interest, and whereHv is any other
~the so called variational! Hamiltonian,Fv is the correspond-
ing free energy, and the subscriptv on the thermal average
indicates that a Boltzmann weight with HamiltonianHv is
used. The advantage of the variational principle can be ta
if the arbitrary variational HamiltonianHv is judiciously
chosen to be simple enough, so that thermal averages ca
calculated, but at the same time general enough so as t
able approximately capture the physics of the full Ham
tonianH.

Since, unfortunately, our abilities to compute function
integrals do not extend beyond Gaussians, we choose a
dratic form forHv ,

Hv5(
n
E dxFBx

2 S dfn

dx D 2

1
By

2
~fn112fn!2G , ~A5!

with Bx and By as the effective variational parameters, r
spectively, related to the effective long wavelength bulk a
shear moduli, the latter given by

m5BydS 2p

a D 2

. ~A6!

Simple Gaussian averages then lead to the variational
energy densityf̃ (Bx ,By)5F̃(Bx ,By)/LxNy ,

f̃ 5E
k
H F1

2
~B2Bx!kx

22By~12coskyd!GGv~k!

2
1

2
kBT logGv~k!J 2g expF2E

k
~12coskyd!Gv~k!G ,

~A7!

whereLx andNy([Ly /d) are the length and the number o
laser potential troughs~i.e., the 2D dimensions of our colloi
dal system!, respectively, andGv(k) is the Fourier transform
of the intratrough displacement correlation function given

Gv~k!5kBT@Bxkx
212By~12coskyd!#21. ~A8!

To find the upper bound of the free energy densityf̃ , we
now minimize f̃ (Bx ,By) over the variational parametersBx
andBy . A conceptually simple but tedious calculation giv

Bx5B, ~A9a!

By~B,g!5ge2kBT/[pd(ByB)1/2] . ~A9b!
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Equation ~A9b!, which determines the behavior ofBy ,
and therefore the effective shear modulusm, as a function of
temperature and intertrough couplingg, illustrated in Fig. 23,
is the main result of the variational calculation. A simp
graphical analysis of Eq.~A9b! predicts

By~g!50 for g,gc , ~A10a!

By~g!'ge2kBT/p(gB)1/2
for g@gc , ~A10b!

where the critical value of the couplingg which separates the
two solutions forBy is given by

gc5S kBTe

2p D 2 1

B
. ~A11!

Combining this with Eq.~A6!, we conclude that the tran
sition between the two solutions in Eq.~A10! represents the
freezing of a zero shear modulus (m50) 2D liquid into a
finite shear modulus (m.0) 2D solid. In terms of the shea
modulusm and the bulk modulusK, defined by Eqs.~A2c!,
the corresponding melting transition temperature is given

kBTm5
a2

2p
AKm, ~A12!

a value that, up to factors of order 1, is consistent with
asymptotically exact prediction of our strong coupling~elas-
tic model! analysis given in the main text.

APPENDIX B: EFFECTIVE ELASTIC CONSTANTS
FOR SCREENED REPULSIVE COULOMB POTENTIAL

To calculate the effective elastic constants in the limit
large through potential, we start from a model with a p
potential given by a screened repulsive Coulomb poten
V(r )5V0a exp(2kr)/r, where the screening lengthk21 is
typically much shorter than the mean particle spacinga. The
total potential energy is then given by

F5
1

2
V0a (

^ l ,l 8&

1

uRl l 8u
e2kuRl l 8u, ~B1!

FIG. 23. Shear modulusm as a function of the intertrough cou
pling g ~at fixed temperature!, showing a freezing transition be
tweenm50 2D liquid and am.0 2D crystal, and a jump discon
tinuity at gc in the shear modulus.
03150
y

e

f
r
al

where due to the short range of the potential we can sa
restrict summation to nearest neighbors,^ l ,l 8&. The distance
between the colloidal particles numberedl and l 8 can ~for a
perfect lattice! be decomposed into a distance between
equilibrium positionsr l and the displacement vectorsul :

Rl l 85r l2r l 81ul2ul 8[r l l 81ul l 8. ~B2!

In the following we restrict ourselves to the primary config
rations, and write the potential energy as sums over Br
‘‘planes’’ ~i.e., rows of particles ind52) indexed by an
integerr and particles within these rows indexed byl,

F5V0a(
l ,r

H 1

@~a1dul !
21dhl

2#1/2

3exp$2k@~a1dul !
21dhl

2#1/2%

1
1

@~a/21Dul !
21~d1Dhl !

2#1/2

3exp$2k@~a/21Dul !
21~d1Dhl !

2#1/2%

1
1

@~a/21Dūl !
21~d1Dhl !

2#1/2

3exp$2k@~a/21Dūl !
21~d1Dhl !

2#1/2%J , ~B3!

where the relative intravalley and intervalley displacem
fields are defined as follows~see Fig. 24!:

dul5ux~xl1a,yl !2ux~xl ,yl !, ~B4!

dhl5uy~xl1a,yl !2uy~xl ,yl !, ~B5!

and

Dul5ux~xl1a/2, yl1d!2ux~xl ,yl !, ~B6!

Dūl52ux~xl2a/2, yl !1ux~xl ,yl !, ~B7!

Dhl5uy~xl1a/2, yl1d!2uy~xl ,yl !.
~B8!

FIG. 24. Sketch of two rows of a triangular lattice of colloid
particles in a trough potential illustrating two contributions to t
effective potential energy. The sum over the lattice sites is done
summing along the valleys; there is one intravalley nearest neigh
~wiggly line! and two intervalley nearest neighbors one in the f
ward direction (Du) and one in the backward direction (Dū) ~solid
lines!.
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In the strong pinning limit the laser potentialHK can be
expanded in powers of the phonon fields in they direction,

bHK5
UK

kBT (
l

cosS 2p

d
hl D

'p2
8p2

3

UK

kBT (
l

S hl

a D 2

[kBTw(
l

S hl

a D 2

, ~B9!

where we have usedpd5A3a/2. In the following we shall
~in order to simplify notation! measure all lengths in units o
the mean lattice spacing.

We proceed as follows:~i! first we expand all terms in the
total potential energyF to quadratic order in the out-of val
ley displacement fields;~ii ! then we integrate out the massiv
out-of-valley modes, and~iii ! finally we take the continuum
limit. Note, that it is only step~i! which explicitly depends
on the particular form of the pair potential. For simplicit
we will limit our derivation to the leading order inV0 /UK
andkBT/UK .

Step~i! gives

bF@u,h#5b~F11F21F3!, ~B10!

with

F1@u,h#5v(
l

$2 1
2 ~k11!dhl

21 1
2 ~k212k12!dul

2

1b1~k!dhl
2dul1d1~k!dhl

2dul
2%, ~B11!

F2@u,h#5v(
l

$ 1
8 ~3k215k15!Dhl

21 1
8 ~k22k21!Dul

2

1a2~k!DhlDul1b2~k!Dhl
2Dul

1g2~k!DhlDul
21d2~k!Dhl

2Dul
2%, ~B12!

and F3@ ū,h# obtained fromF2@u,h# by the replacemen
Dul→Dūl . Here we have also introduced

b1~k!5 1
2 ~k213k13!, ~B13!

d1~k!52 1
4 ~k315k2112k112! ~B14!

and

a2~k!5
A3

4
~k213k13!, ~B15!

b2~k!52
1

16
~3k3114k2133k133!, ~B16!

g2~k!52
A3

16
~k312k213k13!, ~B17!
03150
d1~k!5 1
64 ~3k4114k3155k21123k1123!. ~B18!

The dimensionless ratio

v[e2k
V0

kBT
~B19!

measures the strength of the pair potential relative to a t
cal thermal energy. Next we integrate out the massive p
non fieldshl with a Boltzmann weight given by the extern
potentialHK ,

exp@2bHeff#5E @dh#expF2w(
l

hl
22bF@u,h#G ,

~B20!

where*@dh# denotes an integration over the$hl%. We find

bHeff5(
l

H dul
2Fv

2
~k212k12!1

v
w

d1~k!2
v2

w
a2

2~k!G
1~Dul

21Dūl
2!Fv

8
~k22k21!1

v
w

d2~k!G J . ~B21!

In the continuum limit~and reindroducing the scalea), we
have

dul
2→a2~]xux!

2, ~B22!

~Dul
21Dūl

2!→a2S 1

2
~]xux!

21
3

2
~]yux!

2D , ~B23!

(
l

→ 1

a2E d2x. ~B24!

We finally find our desired result, namely,

Heff5
1

2E d2r @meff~]yux!
21Keff~]xux!

2#, ~B25!

with

meff'meff
` H 11

9~ka!2

64p2 S 11
17

3kaD kBT

p2UK
J , ~B26!

Keff'Keff
` H 11

~ka!2

64p2 S 128v2
231104v

3ka D kBT

p2UK
J , ~B27!

where

meff
` 5 3

8 „~ka!22ka21…V0e2ka, ~B28!

Keff
` 5 1

8 „9~ka!2115ka115…V0e2ka. ~B29!
3-32



te

a

iso
n

t-

B

ett

nd

v
.
,

ys

en

t,

y

ys

ef
by
ur

.

-
sity
la-
to

ic

eter

llel
e-

as

de

e
nel

ulus

ic
dis-

ties
e

ex-
e-
nts

ere
up
ble.
if it
m-
ue

t,

NOVEL PHASES AND REENTRANT MELTING . . . PHYSICAL REVIEW E63 031503
@1# B. I. Halperin, inProceedings of the Kyoto Summer Institu
1979—Physics of Low-Dimensional Systems, edited by Y. Na-
gaoka and S. Hikami~Publisher, Kyoto, 1979!, p. 53.

@2# D. R. Nelson, inPhase Transitions and Critical Phenomen,
edited by C. Domb and J. L. Lebowitz~Academic, London,
1983!, p. 1.

@3# L. D. Landau, Phys. Z. SowjetunionII , 26 ~1937!; also see S.
Alexander and J. McTague, Phys. Rev. Lett.41, 702 ~1984!.

@4# J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181~1973!;
also see V. L. Berezinskii, Zh. E´ksp. Teor. Fiz.59, 907~1970!
@Sov. Phys. JETP32, 493~1971!#; 61, 1144~1971! @Sov. Phys.
JETP34, 610 ~1972!#.

@5# B. I. Halperin and D. R. Nelson, Phys. Rev. Lett.41, 121
~1978!; D. R. Nelson and B. I. Halperin, Phys. Rev. B19, 2457
~1979!.

@6# A. P. Young, Phys. Rev. B19, 1855~1979!.
@7# R. E. Peierls, Ann. Inst. Henri Poincare5, 177 ~1935!; L. D.

Landau, Phys. Z. SowjetunionII , 26 ~1937!; N. D. Mermin,
Phys. Rev.176, 250 ~1968!.

@8# For other examples of sharp phase transitions between d
dered phases see, for example, L. Radzihovsky and J. To
Phys. Rev. B60, 206~1999!; Phys. Rev. Lett.78, 4414~1997!;
79, 4214~1997!, and references therein.

@9# C. C. Huang, inBond-Orientational Order in Condensed Ma
ter Systems, edited by K. J. Strandburg~Springer, New York,
1992!.

@10# C. Knobleret al., Annu. Rev. Phys. Chem.43, 207 ~1992!.
@11# C.-A. Murray, W. O. Springer, and R. A. Wenk, Phys. Rev.

42, 688 ~1990!.
@12# K. Zahn, R. Lenke, and G. Maret, Phys. Rev. Lett.82, 2721

~1999!.
@13# E. Frey, D. R. Nelson, and L. Radzihovsky, Phys. Rev. L

83, 2977~1999!.
@14# S. N. Coppersmith, D. S. Fisher, B. I. Halperin, P. A. Lee, a

W. F. Brinkman, Phys. Rev. B25, 349 ~1982!.
@15# V. L. Pokrovskyet al., in Solitons, edited by S. E. Trullinger

et al. ~North-Holland, Amsterdam, 1986!, Chap. 3, pp. 71–
127.

@16# A. Chowdhury, B. J. Ackerson, and N. A. Clark, Phys. Re
Lett. 55, 833 ~1985!; N. A. Clark, B. J. Ackerson, and A. J
Hurd, ibid. 50, 1459~1983!; B. J. Ackerson and N. A. Clark
Faraday Discuss. Chem. Soc.76, 219 ~1983!.

@17# A. Ashkin and J. M. Dzedic, Appl. Phys. Lett.19, 283~1971!;
A. Ashkin, Science210, 1083~1980!.

@18# J. Chakrabarti, H. R. Krishnamurthy, and A. K. Sood, Ph
Rev. Lett.73, 2923~1994!.

@19# J. Chakrabarti, H. R. Krishnamurthy, A. K. Sood, and S. S
gupta, Phys. Rev. Lett.75, 2232~1995!.

@20# C. Das, A. K. Sood, and H. R. Krishnamurthy, preprin
cond-mat/9902006.

@21# See, e.g., K. Bagchi, H. C. Andersen, and W. Swope, Ph
Rev. E53, 3794~1996!.

@22# Q.-H. Wei, C. Bechinger, D. Rudhardt, and P. Leiderer, Ph
Rev. Lett.81, 2606~1998!.

@23# Experiments on colloids, similar to those described in R
@11#, with a periodic one-dimensional potential provided
lithographic patterning of the confining glass plate, are c
rently underway at Lucent Technologies@C.-H. Sow and C.M.
Murray ~private communication!#.
03150
r-
er,

.

.

.

-

s.

.

.

-

@24# K. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T
C. Lubensky, and A. G. Yodh, Phys. Rev. Lett.85, 1770
~2000!.

@25# The scattered intensityI out is clearly proportional to the prod
uct of the scattering cross section and the input laser inten
I in . Since the former is related to the density-density corre
tion function, the cross section itself must be proportional
the square of the input laser intensityI in , which explicitly
induces finite density modulation. ConsequentlyI out}I in

3 .
@26# As explained in detail in Sec. II C, a laser-induced period

potential, whose strength is proportional toI in , induces a nem-
atic ordering fieldhi j proportional toI in

2 . The cubeof the in-
duced nematic order parameter@proportional (I in

2 )35I in
6 ] then

in turn acts as an ordering field on the hexatic order param
c6.

@27# E. Frey, L. Radzihovsky, and D. R. Nelson~unpublished!.
@28# A set of primary Bragg planes is defined by those para

planes of colloidal particles within which all particles are r
lated by multiples of asingle fundamentallattice vector.
Equivalently, a set of primary Bragg planes can be defined
those planes, which run perpendicular to one of thefundamen-
tal reciprocal lattice vectorsGi .

@29# L. S. Levitov, Phys. Rev. Lett.66, 224 ~1991!.
@30# Because an applied periodic potential will generically inclu

the higher harmonics, all of our results forp51 also directly
extend to all rational fractions 1/q, with qPZ.

@31# The factor of 1/d2 is inserted into the definition of the discret
model purely for convenience, so as to have the interchan
coupling m have the same dimensions as the shear mod
meff of the continuum elastic model in Eq.~1.3!, which then
allows its identification as the microscopic shear modulus.

@32# C. Carraro, Phys. Rev. B61, R16 351~2000!; also see M. W.
Cole et al., Phys. Rev. Lett.84, 3883~2000!.

@33# For 1,p<pc , our system in principle admits more exot
locked smectic phases, characterized by invariance under
crete translations bynd, where nPZ, but nÞp. Although
these phases are thermodynamically distinct, their proper
are similar to those that we consider in the main text. W
therefore do not study them any further here.

@34# D. J. Bergman and B. I. Halperin, Phys. Rev. B13, 2145
~1976!.

@35# See, e.g., J. D. Weeks, inOrder in Strongly Fluctuating Con-
densed Matter Systems, edited by T. Riste~Plenum, New
York, 1980!.

@36# Strictly speaking, the elastic Hamiltonian@Eq. ~2.4!# is only
valid at scales longer than the typical size of a thermally
cited dislocation pair, such that the effects of topological d
fects can be safely incorporated into effective elastic consta
m andl.

@37# S. Ostlund and B. I. Halperin, Phys. Rev. B23, 335 ~1981!.
@38# It is important to appreciate that even in the FS phase, wh

the periodic potential is irrelevant in the renormalization gro
sense, its effects are nontrivial and experimentally observa
For example, in the presence of a periodic potential, even
is irrelevant, the continuous translational and rotational sy
metry is explicitly broken, and the FS phase displays tr
Bragg peaks in its structure function at multiples ofK .

@39# P. G. de Gennes,The Physics of Liquid Crystals~Oxford Uni-
versity Press, London, 1974!; P. G. de Gennes and J. Pros
3-33



-

-

,

it
a

-

lic
t

-

ase

r
lid

on-
ec-
sed

LEO RADZIHOVSKY, ERWIN FREY, AND DAVID R. NELSON PHYSICAL REVIEW E63 031503
The Physics of Liquid Crystals, 2nd ed.~Clarendon Press, Ox
ford, 1993!.

@40# P. Chaikin and T. C. Lubensky,Principles of Condensed Mat
ter Physics~Cambridge University Press, Cambridge, 1995!.

@41# J. Toner and D. R. Nelson, Phys. Rev. B23, 316 ~1981!.
@42# J. V. Jose´, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson

Phys. Rev. B16, 1217~1977!.
@43# K. G. Wilson and J. B. Kogut, Phys. Rep.12C, 75 ~1974!.
@44# The choice of the phonon field-rescaling exponentf is of

course arbitrary. If instead of the convenientf50 choice we
left it arbitrary, then to return the Hamiltonian into the form
had before the RG transformation, we would have to also
low the periodic potential wave vectorK to flow as K( l )
5Kef l . In the end the flow equations for thedimensionless
coupling constants would involveK( l ), and would be indepen
dent of the choice off.

@45# D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett.39, 1201
~1977!.

@46# The conclusion of a direct LFS-LSm phase transition is imp
itly based on the assumption that the periodic potential tha
03150
l-

-
is

relevant in the 2D solid phase~LFS! remains relevant~leading
to the LSm phase! even when type I dislocation unbind pro
ducing a smectic phase. If for a range of parametersTpS

.TpSm then we would instead expect a direct LFS tofloating
smectic phase transition. Similarly, a direct FS-FSm ph
transition may instead be replaced by a direct FS tolocked
smectic phase transition, ifTpS,TpSm over some paramete
range, so that the periodic potential is irrelevant in the 2D so
~FS! phase but becomes relevant in the smectic~LSm! phase,
where type I dislocations are unbound. Because of the n
trivial relation between elastic constants in the solid and sm
tic phases, we cannot exclude the exotic possibilities discus
above based on Eqs.~4.15! and ~4.19! for TpS and TpSm, re-
spectively.

@47# D. S. Fisher, Phys. Rev. B26, 5009~1982!: D. S. Fisher, B. I.
Halperin, and R. Morf,ibid. 20, 4692~1979!.

@48# See, e.g., L. Balents and D. R. Nelson, Phys. Rev. Lett.73,
2618 ~1994!.

@49# C. Bechinger, M. Brunner, and P. Leiderer~unpublished!, and
private communication.
3-34


