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Novel phases and reentrant melting of two-dimensional colloidal crystals
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We investigate two-dimension&D) melting in the presence of a one-dimensiofidD) periodic potential
as, for example, realized in recent experiments on 2D colloids subjected to two interfering laser beams. The
topology of the phase diagram is found to depend primarily on two factors: the relative orientation of the 2D
crystal and the periodic potential troughs, which selects a set of Bragg planes running parallel to the troughs,
and the commensurability ratip=a’/d of the spacinga’ between these Bragg planes to the pedoaf the
periodic potential. The complexity of the phase diagram increases with the magnitude of the commensurabilty
ratio p. Rich phase diagrams, with “modulated liquid,” “floating,” and “locked floating” solid and smectic
phases are found. Phase transitions between these phases fall into two broad universality classes, roughening
and melting, driven by the proliferation of discommensuration walls and dislocations, respectively. We discuss
correlation functions and the static structure factor in these phases, and make detailed predictions about the
universal features close to the phase boundaries. We predict that for charged systems with highly screened
short-range interactions, these melting transitions are generically reentrant as a function of the strength of the
periodic potential, a prediction that is in accord with recent 2D colloid experiments. Implications of our results
for future experiments are also discussed.
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[. INTRODUCTION Although evidence of defect driven phase transitions ap-
peared in numerous experiments on liquid crysflland
Langmuir-Blodgett filmg10], finding simple model systems
Two-dimensional(2D) melting and mathematically re- which exhibit these phenomena in experiments or simula-
lated systems, such as, for example normal-to-superfluid angbns has proven to be more controversial. Some system pa-
planar paramagnet-to-ferromagnet transitions in fillds-  rameters appear to fall into the range in which it is discon-
scribed by the 2DXY mode) are striking examples of the tinuous melting that converts a solid directly into a liquid.
increased importance of thermal fluctuations in low-However, it appears that two-stage continuous melting was
dimensional systemfl,2]. In contrast to their bulk, three- recently experimentally observed by Murrayal. [11] and
(and higher) dimensional analogs, where, typically, fluctua- Zahn et al. [12] in beautiful melting experiments on two-
tions lead only toquantitative modifications of mean-field dimensional colloids confined between smooth glass plates
predictions(e.g., change values of critical exponentsere and superparamagnetic colloidal systems, respectively. In
the effects argualitativeand drastic. Located exactly at the these experiments, an orientationally quasi-long-range or-
lower-critical dimension ¢,.=2), below which the distinc- dered but translationally disordered hexatic phgsewas
tion between the high and low temperature phases is erasépserved. This phase, intermediate but thermodynamically
by fluctuations, two-dimensional melting can proceed via gdistinct from the 2D solid and isotropic liquid, is an impor-
subtle, two-stagegontinuoustransition, driven by an unbind- t&nt signature of defect driven two-stage melting. In these
ing of topological defectgdislocations and disclinations two-dimensional colloids, particle positions and the associ-

This mechanism, made possible by strong thermal quctua@ted topological defects can be directly imaged via digital

tions, therefore provides an alternative route to a direct firstyldeo microscopy, allowing precise quantitative tests of the

order melting, argued by Landau’s mean-field analj@]o theory. Colloids are thus |dee_1l expgrlmental _model systems
. . to explore the details of two-dimensional melting and related
be theexclusivescenario.

o : . phenomena, many of which are the focus of the theory pre-
Despite its long history, dating back to the work of Ko- sented heré13).

sterlitz_and Thoules§4]_, H_alpenn a_nd Nelsor{5], and Soon after the initial development of the theory of two-
Young[6] (KTHNY) (which in turn built on a large body of  yinensional melting, theoretical efforts turned toward stud-
ideas dating back to Landau and Peig¢fly, interest in 2D jog of the effects of a substrate, an important ingredient in
melting and related problems persists. On the theoretical Sldﬁ]any physical systems. These studigé,15 uncovered a
th|S iS due, in part, to the faCt that the theOI’y Of 2D meltingrich phenomeno'ogy Stemming from the interplay between
is an unusual example of a nontrivial and quite exotic Critica|the under|ying periodic substrate and a quasi_|ong_range or-
point that lends itself to an asymptoticakxactdescription.  dered solid film interacting with it. While many experiments
Furthermore, the KTHNY class of transitioiD melting  have been undertaken, with a krypton film on a graphite
and related disordering of a 2RY mode) provides a rare substratgsee, e.g., Ref.15] for a review being one of the
example of thermodynamically sharp phase transitions bebest studied, these systems are far from ideal in exploring
tween phases, both of which lack long-range off@dr this rich phenomenology, because of the lack of substrate

A. Motivation and background
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tunability; in these systems it is difficult to change the sub-nomenology of the early experiments by Chowdhetyal.
strate period, dimensionality, and pinning strength. [16] and recent ones by Wet al. [22] and otherg23]. De-

A series of pioneering experiments by Chowdhury, Ack-ve_loping such a theoretical fr_amewo_rk and exploring its de-
erson, and Clark16] constituted an important new develop- tails to interpret these experiments is the goal of the work

ment. In these studies strongly interacting colloidal particIesPrecs)ﬁ?tiﬁ?eP:;fi'n this problem was stimulated by the exper
confined fo two dimensions, were subjected to a onep o ot\weiet al. [22], which extended the light-induced

di'mensional periodic potential, induced .by the interfer(':'m:(':i'nelting experiments to higher laser intensities than those
fringes from two laser beams crossed in the sample. Theyjied in Ref[16]. One other notable difference is that in

light-induced polarization in these micron-size dielectric par-conrast to the strong long-range interaction of unscreened
ticles interacts with the laser electric field, leading to a rad'a'charged colloids in highly deionized solutigaé], in Wei

tion pressure forcgl7] directed toward the regions of high e 5’5 experiments colloidal particles were interacting via a
laser intensity, the antinodes’ maxima in the laser Sta”d'”%hort-ranged Debye potential, with ions in the solution
wave pattern. _ _ _ screening the long-ranged Coulomb interaction. In addition
One of many interesting phenomena discovered by, e jight-induced freezing, observed at low light intensi-
Chowdhurygt al. |s.the fixed-temperature freezing transmo_n ties, the authors of Ref22] discovered aeentrantmelting
driven by_ increasing the gtrength of th_e I.aser pOt?”t'alphenomenon, “light-induced meltinglLIM ), driven by the
dubbed “light induced freezing'(LIF). Qualitatively, LIF is * i,creased strength of the laser-induced one-dimensional pe-
due to the suppression of thermal fluctuations of the colloidal;,4ic potential. As discussed below, this fascinating reen-

particles transverse to the imposed periodic pinning laser pg;5nce phenomenagenericallyemerges from our theoretical

tential. This intuition is also supported by a more quantita’analysis in the limit of a short Debye screening length.

tive anqusis based on Landau’s frge energy expansion in the ¢ goal of this paper is to investigate two-dimensional
translational order parametefgensity Fourier modespc,  melting in the presence of a one-dimensional periodic poten-
with the{G;}'s the three smallest reciprocal lattice vectors oftial, and to answer many basic questions stimulated by these
a triangular lattice. In the simplest geometry, with e@y, recent experiments. What is the nature of such melting tran-
commensurate with the laser potentigs, ) is trivially in- sition, if not preemptedas it can always bheby the first-
duced by the potential even in the liquid phase. Such a finit@rder transition? More generally, how is the standard phase
(pg,) then converts Landau's cubic couplings pgps,  diagram for 2D melting on a homogeneous substfatéch
(which, in mean-field theory, is responsible for melting al-includes the 2D crystal, hexatic and liquid phasesdified
ways being first ordérinto a simple upward shift in the by th_e pe(|0d|c laser potential? Which of the_ phases survive
melting temperature for the only remaining critical mogie M€ light field and what new ones emerge in its presence?
= pe.—pe.. Not surprisingly, the resulting Landau expan- The answers to these and_ many 'other questions, provided

2 3 . below, lead to results consistent with experimental observa-
sion conta!ns only even POWErS of this comp!ex orc_ier ParaMgons, and have many testable consequences for possible fu-
eter ¢, which therefore generically orders viacantinuous

transition in theXY universality class. Hence, within the ture experiments.
mean-field description discussed by Chowdhatyal. [16],
one expects to reach a tricritical point upon increasing the
light intensity, beyond which the LIF transition becomes Even in a liquid phase at high temperatures laser interfer-
continuous. ence fringes, which we choose to run alongtais, induce
However, because of the dominant role of thermal fluc-a periodic density modulation in the colloidal liquid. As a
tuations in two-dimensional systems, such “soft-spin” Lan- consequence the static structure functi8fq) displays
dau expansions in order parameter amplitugiesd the re- Bragg peaks ak,=n(2#/d)y, the integer multiples r{
lated density functional theori¢%8]) will have difficulties in e Z) of the reciprocal lattice vectdf = (27/d)y of the im-
capturing the subtleties of the continuous topological phasposed one-dimensional periodic potential with a trough spac-
transitions possible in these two-dimensional systems. Uning d [24]. The liquid phase density exhibitsfmite linear
fortunately, results from Monte Carlo simulations are incon-response to such a periodic perturbation with amplituge
clusive. Although earlier simulationsl9] claimed to have which is proportional to the input laser intenslty. This is
found a tricritical point at intermediate laser intensities, con-consistent with the observations of Chowdhutyal. [16],
sistent with density functional theory, recent studies from thevho found the scattered laser intendity;, at these directly
same laboratory20] refuted these results. These difficulties induced Bragg peaks, to scale as a cube of the input laser
are perhaps unsurprising, given that even much larger scafgower |, [25]. These explicitly induced features of the
simulations have, so far, failed to completely resolve themodulated liquid persist throughout the phase diagram, with
nature of 2D melting, evewithout a periodic external po- the additional structure emerging as a result of numerous
tential [21]. spontaneousymmetry breakings, which we discuss below.
An alternative (but complementary and in principle The laser-induced periodic potential aksxplicitly breaks
equivalent “hard-spin” defect description(with order pa- continuous 2D rotational symmetry down & symmetry
rameter amplitude fluctuations represented by defect fores(rotations by ). Consequently, the one-dimensional peri-
extended to include a one-dimensional periodic pinning poedic potential induces nematic, square, hexatic, and higher
tential may be necessary to correctly capture the rich phesrientational harmonics long-range orders, respectively,

B. Summary of the results
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characterized by arRatic bond orientational order param- .a.

eter,,=(€'2"%") which, independent of any other details, A& = =
are nonzero throughout the phase diagram. Therefore, in par- ~ ----- id
ticular, the laser potential eliminates the continuous transi- -
tion from an isotropic liquid phase to a hexatic liquid phase, S P __

expected in two-dimensional liquids in the absence of an ==

external potential5]. This situation is analogous to a ferro- o Av AVA‘EAVEE oo

magnet in a magnetic field, where the qualitative distinction SR Vs & vy o ey 2 vy s W ) wpmy . Vg JUNISN

bet\?veen paramggnetic and ferromagne?ic phases is erased by --- AvAvAVEAv —————

the external magnetic field, with both phases displayinga ~ ~~ "~~~ "~~~ """ "7t TTTTToTTTT

finite induced magnetization. FIG. 1. Triangular lattice with lattice constaatsubject to a

Since the hexatic orientational ordereasplicitly induced  periodic potentialmaxima indicated by dashed linefer pd=a’,

by the laser potential, it must vanish as the laser field is tunedith a’ = y/3a/2 andp=2. Also shown is the low energy disloca-

to zero. Analogously to a power-law vanishing of the mag-tion with Burgers vectob parallel to the corrugation of the external

netization with an external magnetic field in a ferromagnet apotential.

its critical point, we predict that at low input light intensities

lin, the orientational order parameter, vanishes asigersal  Upon integrating out the massiwg, modes and using stan-

power ofl;,, dard renormalization group methoffs] to eliminate bound
dislocation pairs in the LFS phase, we are left with a free

(1.9 energy with temperature and potential strength deperefent
fectiveelastic constants:

1/6 g
)

eI,

n

with 1/5,, =6 [26] in the liquid phase and

1

6?6 HLFSZEJ dzr{Keff(axux)2+,Uveff(‘;yux)z}- (1-3)
— (1.2

4= e

1/6'1/6:

The structure function of a LFS is quite unusual. Like the
in the hexatic phase, whetg; is the exponent describing the high temperature modulated liquid discussed above, the LFS
algebraic decay of bond orientational order in the absence dfisplays a set of delta-function Bragg pedkesduced by the
the laser-induced periodic potentigd]. We expectyg to Debye-Waller factor located at the multiples of the laser
approach a nonzerb,,-independent constant in the solid potential reciprocal lattice vectdt =(27/d)y, which coex-
phase, consistent with thgpontaneoudong-range hexatic ist with otherspontaneouslynduced Bragg and quasi-Bragg
order of the 2D crystal, even in the absence of a periodipeaks.
potential. The more detailed properties of the LFS and other phases

All other details of the phase diagram and the propertiegxhibited by our system, strongly depend on the choice of
of the phases for our system depend strongly on the level ahe infinite set of colloidal crystal orientations relative to the
commensurability between the two-dimensional colloidallight interference fringes. While we will explore these nu-
crystal, in the absence of the laser field, and the onemerous possibilities in their full generality in the main body
dimensional periodic potential that it induces. This in turn isof the paper, in this subsection we summarize our results
determined by two ingredient$) the orientation of the tri- only for the simplest orientation studied in the experiments
angular colloidal lattice relative to that of the periodic poten-of Refs.[16,27], in which the periodic potential troughs run
tial troughs, which selects a set of Bragg planes that rumarallel to theprimary Bragg plane$28].
parallel to the troughs; an@) the commensurability ratio of Experimentally, we expect our system to display a con-
the spacin@’ between these Bragg planes to the pedaxf  siderable amount of irreversibility, with the choice of the
the laser potential, defined Ip=a’/d. In this paper we will  relative orientation highly dependent on the way the system
primarily focus on the commensurate case defineg byZ,  is taken into the crystal state: if the laser potential is turned
and defer the rich phenomenology of the incommensuraten in the liquid phasefield cooled, the crystal will freeze
case and the commensurate-incommensurate transitions tdrdo the lowest energy orientation consistent with the im-
later publication27]. posed colloidal densityor the chemical potentipbnd laser

For these commensurate densities, independent of the diringe spacing[29]; in contrast, in zero-laser-field cooling
der of commensurabilityp, at the lowest temperatures we experiments, an already formed crystal may be unable to
always find that our system freezes into an interesting type afeorient significantly, and will therefore lock into a meta-
a crystal, which we call a “locked floating solid(LFS)  stable orientation, determined by the plane of the two inter-
phase. This phase derives its apparently contradictory nanfering laser beams.
from its highly anisotropic properties: while the solid is  Once we focus on the primary orientation, illustrated for
pinned transversely to the troughs of the periodic potentialp=2 in Fig. 1, the phenomenology of our system is com-
executing only massive optical phonon-like excitations inpletely determined by the integer commensurability ratio
that direction, it is able to slide freely along the potential As we will show, for commensurate densities, our system
minima with acoustic phonon excitations within the troughs.admits three phase diagram topologies, corresponding to the
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T where K is the bare compressional elastic modulus within
each channel, and is the microscopic coupling between the
channels determining the shear modulus of the 2D system
[31]. At high temperatures or weak microscopic couplpng

the colloid decomposes into an orientationally ordered two-
dimensional liquid of decoupled one-dimensional channels.
At temperatureTl, the phonon fluctuations within a channel
then grow according to

kT
(Jun) ~Un(0)[3) = S, (1.5

FIG. 2. Schematic phase diagram for a primary commensuratas can be seen from the equipartition theorem. Upon choos-
orientation with commensurability ratip=1. T, indicates the tran-  ing x such that the root mean square phonon fluctuations are
sition temperature from the hexatic to the isotropic liquid phase akqual to the intrachannel particle spacmgve determine a

Uk =0. Insets:Schematic structure functions in the various phasestranslational correlation lengté(T), which diverges at low
The X's indicate delta-function Bragg peaks, and the shaded circlegemperatures:

algebraic peaks.

Kd
three ranges of the values @f (i) p=1 [30], (i) 1<p §T(T)=kB—Ta2. (1.6
<p., and(iii) p>p., with the critical value ofp.~3.7 for
the primary orientation. The channels will couple to form a coherent two-
dimensional LFS phase when the effective coupling
1. Commensurability ratio p=1 dér(T)u(a/27wd)? between correlated 1D regions of size

For p=1[30], we find the phase behavior of the 2D col- &1(T) surpasses the thermgl eneflgyT which (_ief:orrelates
loidal system as summarized by the phase diagram illustratd§e 1D channels. We associate this characteristic temperature
in Fig. 2. with the melting temperatur€,, of the LFS phase, which is

Because the sharp distinction between the hexatic and iséerefore given by
tropic liquid phases is absent in the presence of a periodic _ B
potential, this phase diagram contains only two thermody- kgTm=consxa®yuK. 1.7

namically distinct phases at finitd, : the modulated liquid A similar argument leads to the estimate for freezing into the

phase and the simplept=1 “locked floating solid” phase. o ' : : .
We can estimate the order of magnitude of the transitiori?ree dimensional locked floating solid phases discussed by

temperature between the LFS and liquid phases in terms

Elcr(olsgﬁpallc ?Iﬁse\f .C%nf;anﬁim”ir;o ttrhzsel apprearltn%tlinl of the weakly coupled mod¢Eq. (1.4)], freezing into a LFS

th% érticlez a?eoco?].fined teo a a?allelsar(r)(:lgo:l Zeuaplcl) es ;::et kes place at a strong coupling and therefore does not
P P Y quatly sp llow a rigorous renormalization group treatment of the tran-

1D tc_:hlang_elslof spam:uj#_ |I|Igstr|ated Lﬂ;']g ﬁ Ifun(lx) s the sition. Nevertheless an approximate variational treatment is
particle displacément Tield aiong channel, we can a[Possible, and is presented in Appendix A.

write the energy of these weakly coupled one-dimension Instead, here we take an alternative route to the study of

rows of particles as the LFS melting and other transitions by working within a
)2 continuum elastic moddIEq. (1.3)], which is equivalent to

Yarbon nanotubes. As we describe in Appendix A, in terms

the strong couplingbetween the channeglémit of the dis-
crete model in Eq(1.4). Such an approach allows a more
refined and asymptotically exact renormalization group
], (1.4) analysis(presented beloyy within which we find that fop
=1 the melting of the LFS phase is in the universality class
of the XY model, and is driven by unbinding of dislocation
: + K pairs with Burgers vectorb=aX along the troughs of the
periodic potential. Consequently, in contrast to the conven-
n=3 dwmnmpm tional 2D melting transition, at the melting temperatiig,
n=2 f <~y we predict auniversalratio of the jump in the geometric
I mean of the long wavelength effective shear and bulk
moduli, uew(T,,) andKeu(T,,) (describing the elasticity of
a * the LFS phaseto T,,:

1 [du,
a

“ M 27d

2 2
COE{?[UnH(X)—Un(X)]

n=1

FIG. 3. Colloidal particles in channels, labeled mywith intra- \/K (T ppe(Tr) 87
e m e m

channel compressional modulisand interchannel shear coupling =
M. kBTm |b|2

1.8
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This is in agreement, up to constants of order 1, with the;* =1 consistent with the algebraic decay observed in Ref.
rough estimate of the melting temperatufq. (1.7)]  [22] (for a more detailed discussion, see Sec, VIl

sketched above, and with the variational method presented in Our analysis also makexactpredictions for the structure
Appendix A. The most striking feature of the=1 LFS  function peak amplitudes in the limit of low laser intensity.
melting phase transition is the shape of the phase boundagimilar to the hexatic orientational order parametgr[Eq.
Tm(Uk), whose universal features guarantee a generically1 1)], the translational order parameter, defined My
reentrant melting, under conditions such as the experimenté<pK ), is induced by the periodic potential throughourt1 the

of Wei et al.[22]. At low light intensities, i.e., smally , we _ . L
find that the melting curve has a universal, cusp shape, phase diagram. However, in contrast to the liquid phase,
where it vanishes linearly withl , in the crystal phase, for
Tr(U)~Tm(0)+[In(kgTr/Uk) ]2, (1.9  T<Tn(0), we find

with 7~0.36963. On the other hand, for largk, i.e., for MKn~|UK|1’5M, (1.19
ksTm(Uk)/Uk<1, we find that for short-range particle in-

teractions (a=5.8), Tn(Ux) genericallyincreaseswvith de- \yith ,, defined in analogy with the critical exponent at a
creasing amplitud®l of the periodic modulation, according ferromagnetic critical point,

to
5[(ka)?—31] 13 \ kgT, 1/6 7y (1.19
_ T m M= —_—, .
Tu(U) =T 1+ a2 (1+ 3@ 520, 4=
(1.10
and where

thus implying reentrant melting for a band of temperatures as
a function of potential strengtfsee Fig. 2 In Eg. (1.10 _ kgT 3u+A
above,« is the inverse of the Debye screening length, tun- Ko™ Zor mKﬁ (1.19

able by adjusting the solution salt concentration, arj
=T,(Ux—=), which, for the system studied in Rd22],
we estimate to be approximately T, Ux=0).

The structure function for the=1 LFS phase, illustrated
in Fig. 2, is also quite unusual. In addition to the set of Brag
peaks, directly induced by the laser fief{q) also displays
an independent set afuastBragg peaks at the offy-axis
reciprocal lattice vector& [5], |out(Kn)~|<PKn>|2| - (1173

is the exponent with which the real-space density-density
correlation function decays in a 2D crystaithout a sub-
strate potential5]. We therefore predict that foF<T,,(0)
%he intensity of the om-axis Bragg peaks vanishes as an
exactpower of the input laser intensity,, according to

S(q)~ (1.11 ~ | 1* 2w (1.179

lg-GJ277e’ n

which distinguishes the LFS from the modulated liquid state. In contrast, we predict the intensity,, of the off-axis
The corresponding density-density correlation functionquasi-Bragg peaks, labeled by a reciprocal wave vegtdo
Ca(r)={(pg(r)p&(0)), for reciprocal lattice vectors with vanish as

G, #0 shows a power-law decay

14296 1(4=76)| 2— (a—10)
fhog| 12 Kog| 12 |~ 7672 loud G)~ 1, "¢ Le 6™ el (1.18
Ca(r)~ (—) x2+(—) 2 , (112
¢ Kest per) where
where per and K¢ are the effective shear and bulk elastic 6=7a(1—G2G?) (1.19
- X ] .

moduli in Eq.(1.3) for the deformations along the troughs (
axis) of the periodic potential. The exponeng depends on
the relative orientation of the colloidal crystal and the
troughs. Unlike conventional 2D meltif&], it is universal

at the melting transition, and is given by

andL is the system size.

We can also define the translational correlation length by
the widths of the offg,-axis Lorentzian peaks in the struc-
ture function. As the melting temperatufe, is approached

7i=no(T7)=(G-blam)?, (1.13 from above,_given thXY nature of thep:_l LFS melting
phase transition, we expect the correlation lengths parallel
whereb is the smallest allowed Burgers vector in the troughand perpendicular to the troughs to diverge according to
direction. For the primary orientation, illustrated in Fig. 1, /
with b=a, the exponent characterizing the algebraic order in §X’y~e°"T*Tm|1 2, (1.20
the off-axis peakgsee Fig. 2 closest to they, axis is 7g
=1/4; for the next row of peaks, witls,=4m/a, we find  wherec is a constant of order unity.
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T

FIG. 4. Schematic phase diagram for a primary commensurate FIG. 5. Schematic phase diagram for a primary commensurate
orientation with a commensurability parameter in the ranggpl  orientation with a commensurability paramefer p,. (the casep
<p. (the casg=2 is shown herg Thin lines indicate continuous =4 is shown here As in Fig. 4, the thick line indicates a first order
phase transitions. The thick line between the LFS and the moduransition.Insets:Schematic structure factors. As in Fig. 4, thiés
lated liquid phase is most likely a first order phase boundasets:  indicate delta-function Bragg peaks, and the shaded circles alge-
Schematic structure functions. As in Fig. 2, tkés indicate delta-  braic peaks.
function Bragg peaks, and the shaded circles algebraic peaks.

H|,xy[u,s] = J dzl’[%(VS)2+ %rSz+ US4] +H LFiu]
2. Intermediate commensurability ratiost<p<<p.

For 1<p<p,, the phase diagram, illustrated in Fig. 4, +f d2r (yydxUy T yydylUy) S°. (1.21
generically includes an additional symmetry-allowed

“locked smectic” (LSm) phase. The LSm phase distin- s is a continuous Ising order parameter, that distinguishes
guishes itself from the modulated liquid by spontaneouslythe LSm phase from the liquid phasg;, are “magnetoelas-
breaking the liquid’s discrete translational symmetry dy tic” parameters, which couple the elastic strain to the “mag-
down to translations byd [33]. In contrast to the LFS netization” S, and where the parameters of the model are
phase, however, the LSm phase exhibits only short-rangeined to the tricritical point at which both order parameters
correlations between colloidal positions lying in different vanish simultaneously. It would be interesting to study the
troughs, and therefore does not resist shear deformations fproperties of such a tricritical point, which to our knowledge
displacements along the potential minima. Correspondinglyhas not been previously explored.

as illustrated in Fig. 4, the structure function of the LSm
phase displays spontaneously induced Bragg peakKs A,

in addition to the Bragg peaks HKt,, directly induced by the For these higher values gf the complexity of the 2D
laser interference fringes. ForIp<p., the LFS phase also colloidal phase diagrantdisplayed in Fig. b further in-
displays these spontaneous Bragg peaks omjhexis atq ~ creases, allowing two new phases, the “floating soli&S)
=K,/p. and the “floating smectic’(FSm phases. _

Symmetry dictates that the freezing of the modulated lig- The new phases are distinguished from their “locked"
uid into the LSm phase is in the-state clockmodel univer- ~ counterparts, the LFS and LSm phases, by their ability to
sality class. Also, similar to the melting of the=1 LFS, we sl_lde(float) acro_sst_he troughs (_)f t_he perlo_d|c potential; tech-
find that the K p<p, LFS phase melts into a LSm phase nlca_llly, the periodic potential is irrelevafin the renormal-
through a transition in th&Y universality class, and will 1zation group senseand therefore can be treated perturba-
therefore also exhibit the usual Kosterlitz-Thouless phenomtiVely inside the FS and FSm phases. As illustrated in Fig. 5,
enology[4]. We have also added to the phase diagram th@!l the spontaneouslyinduced structure function peaks of
possibility of a direct transition from a LFS phase to a modu-these floating phases acuiasiBragg peaks, and therefore
lated liquid phase at intermediate potential strength. We exth€ corresponding density correlation functions display real-
pect this transition to be different than the LFS-liquid tran-SPacepower-lawdecays, sngllar tOSEC(-l-lz’- Although, in
sition for p=1. Whereas theo=1 transition is in thexy  Principle, the crltlcallvaluepC andp; " for the appearance of
universality class, for £ p<p. the LFS-liquid transition is each of these floating phases are most likely distinct, for
associated with simultaneous lossX¥ and discretdlsing ~ Simplicity of the presentation we have takpf=pg"=pe .
for p:2) order. Because at this latter transition two unre_” in reality these critical values are sufficiently distinct, and
lated symmetries are simultaneously restored, we expect it Bg<Ps", then we expect an intermediate rangepofalues,
be first order. At the multicritical point, where the liquid, pf< p< pfm, for which no FSm appears.

LFS, and LSm phases meet, the critical behavior is presum- We find that phase transitions between the corresponding
ably described by a two-dimensional compressible Isindocked and floating phas€&FS-FS and LSm-FSjnare in
model (for p=2) [34] of the form the same universality class as the well-known thermal rough-

3. Large commensurability ratios and floating phases>p,
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FIG. 6. Perturbation-free ideal hexagonal colloidal crystal, char-

acterized by fundamental lattice vectas ) .
FIG. 7. A set of three fundamental reciprocal lattice vec®ys

ening transition[35], the dual of the Kosterlitz-Thouless which completely characterize a perfect hexagonal lattice.

(KT) transition, with an identical phenomenology. Similar to . .
the XY-melting LFS-LSm transition discussed above, theSIeSM =18, N2, with n, o Z, are spanned by a set of
melting of the FS phase into the FSm phase proceeds via Aﬁtt'ce vectors
unbinding of dislocation pairs witl-directed Burgers vec-
tors. However, because of the presence of massless spectator
phonon modes in thg direction(transverse to the troughs of a
the periodic potentia) the melting of the FS phase into the e2=§(éx+ \/§éy), (2.1b
FSm phase might be modified.

The direct transition from LFS to FSm phases is most a
likely first order. Here the order of the, modes changes == (8— \/§éy), (2.19
from quasi-long-range to short-rangeia an unbinding of 2
type | dislocations, i.e., those with Burgers vector parallel Oy equivalently, in Fourier space, the lattice is characterized

the troughs of the periodic potgnljialand those of .the.’y by a set of three fundamental reciprocal lattice vecteese
modes from long-range to quasi-long-rarig& a depinning Fig. 7)

from the laser potential, i.e., a roughening transitidghboth

e =ae, (2.1a

order parameters become critical at the same point in the 20
phase diagram, which will be the case at multicritical points Gi=—F%, (2.2a
where the FS, LFS, and FSm phases meet, we have a phase a’

transition corresponds a simultaneous transition of the KT

type and its dual analog. T L
The remainder of this paper is organized as follows: in G2=§(\/§ex—ey), (2.2h

Sec. I, we introduce and motivate our model for 2D solids

subjected to a 1D periodic potential, and discuss the details -

s_pecn‘lc to the experiments on 2D CO.||OIdS in the_ laser poten- Ga=— (/38 + &), (2.29

tial [22]. In Sec. lll, we give a detailed analysis of all the a’

phases which are allowed by symmetry. In particular, the

static structure factors and correlation functions are diswith a’=a\/3/2, anda the mean colloidal spacing related to

cussed. The mechanisms—dislocation, unbinding and solitothe particle density by p=2/(y/3a?).

proliferation—driving the phase transitions are investigated At sufficiently long scale¢36] and to quadratic order in

in Sec. IV. In Sec. V we derive the universal features of thethe elastic strain,

melting phase boundary, demonstrating that for sufficiently

short-range interactions it generically exhibits a reentrant

melting observed in the experiments of Vétial.[22]. Some

aspects of the response of the translational and bon ive to the equilibrium position in the unconstrained solid,

orientational order parameter to a small external 1D periodic,Ehe elastic energy of a 2D hexagonal crystal is well described
potential are analyzed in Sec. VI using a renormlizationby the continuum isotropic elastic Hamiltonian

group (RG) crossover analysis. In Sec. VII we elaborate on
some implications of our results to experiments and for com-

1
puter simulations. HO:EJ d?r (2puf +\ugy). (2.4

uij=3(du;+o;up), 2.3

ssociated with the colloidal displacement fialck,y) rela-

Il. BASIC INGREDIENTS The Lamecoefficients and X, with x the usual shear
modulus, are the only two elastic constants necessary to
completely characterize the elastic energy associated with
In the absence of external perturbations, we expect that, amall deformations of an unperturbed 2D hexagonal solid.
sufficiently low temperatures the 2D colloidal system freezes An applied 1D periodic potential, which in experiments
into a hexagonal 2D crystal illustrated in Fig. 6. Its lattice [16,22 with dielectric colloidal spheres is conveniently cre-

A. “Microscopic” model

031503-7
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ated by two interfering laser beams, is easily incorporated as ~  —_______ o e ‘-
an additional energetic contributidthy , [d

V3 e .- e e . ]

Hy= —UK7Z cos{K-[rp+u(ry)1}, (2.5 i hd
n a,

where we have focused on the energetically most important ~ ————————- & —————— R — - ———————— -
lowest harmonicK of such a laser-induced potential. The
coupling Uy measures the strength of thk&h harmonic of FIG. 8. 2D hexagonal colloidal crystal in the presence of a com-

the laser potential, proportional to the input laser intensitymensurate 1D periodic potential with period commensurability
lin vector p=3(1,0), and potential maxima indicated by solid lines.

For the purpose of the discussion in this section we hanaShed lines denote the Bragg rows picked out by the laser poten-

chosen an “internal” reference framé,(,&,) where the ori- tial minima.

entation of the hexagonal lattice is kept fixed. Later, begin-

ning with Sec. Il we will switch to a “laboratory frame” P, i.€., in summary by a commensurability vectospm

(%,9) where the orientation of the laser potential is fixed with = (P1,P2). Equivalently, the orientation of the Bragg planes

K|y, i.e., with the troughs running parallel to theaxis. can also be characterized by the shortest direct lattice vector
pointing parallel to the troughs of the external potential,

B. Commensurability and reciprocal lattice

For a general wave vectoK, the periodic (lase) Ri=nie;+nye, (2.9
potential—characterized by a plane wae&, "—will not be
commensurate with the hexagonal lattice. Only for a particuwith the conditionRs-G,z=0, i.e., (1;,N,)=(m;,—m,) a
lar orientation and magnitude &f will the spacing between  set of integergdirect lattice Miller indice with no com-
the pO'[en'[ia| minima match with the peI’IOdICI'[y of the hex- mon factor Comp|ementary to the Miller indices.
agonal lattice. It is this special set cdmmensurateeriodic In Fig. 8 we displayed an example for the simplest set of
potentials that is the focus of our work here. The characterrelative orientations between the periodic potential and the
istic set of commensurate wave vectors is easy to find sincgolloidal crystal. In our notation this corresponds to an ori-
the reciprocal lattice iglefinedto be the set of all wave entation n,,m,)=(1,0) [or, equivalently, (i;,n,)=(1,0)]
vectorsG that yield plane waves with the periodicity of & gnd a commensurability ratip=3, i.e., K=3G10=3G;

given Bravais lattice. Hence commensurability is equivalentq 5 Bragg row spacingr’ﬁza’za\/§/2. Because in such

to t_he condition thaK coincides with one of the reciprocal m=(1,0) orientations, it iprimary Bragg rows 28] that run
lattice vectorsG.

_ . parallel to the periodic potential troughs, we call these rela-
In other words, the planes defined by the minima of theje orientations “primary.” Aside from the simplicity of

external potentialcos( -r)] are a superset of the family of hese configurations, our interest in them is driven by experi-
lattice planes(Bragg planesdefined by the_shortest recipro- ments in Refs[16,22, where a primaryp=1 orientation
cal lattice vectolG;=m;G; + m,G,, with Miller indicesm; was studied.

andmj, parallel to the wave vector of the external potential |, 5qdition to these primarg=p(1,0) configurations, we

K: will also make detailed predictions for the next simplgst
(2.6) =p(1,—1) set of relative lattice-laser potential configura-
tions, illustrated forp=1 in Fig. 9. We call these orienta-
Note that here we focus on situations where the colloidafions “dual primary,” because they correspond to Bragg
particles are allowed to sit in the minima of the externalfOWs running perpendicular tofandamental real-spacet-
potential only. More generally, one could also consider situ{iceé vector withK =p(G, —G,) = —es4m/a’, rather than to
ations where the commensurability parameter is less than @n€ of the thredundamental reciprocalattice vectors. In
with p a rational fractior{30]. terms of the direct lattice these dual-primary orientations cor-
With d=2/|K| being the periodicity of the potential and fespond to 11,n2)=(1,1) and Bragg row spacin@y,
a.=27/|G,| defining the distance between the lattice =&/2. An example of a more general orientation is illus-

K=pGp=p1G1+p.G,.

planes, theeommensurability ratio ps given by trated in Fig. 10. _ _
Using the definition of commensurate configuratipBs.
an  |K| (2.6)], in Eq. (2.5), we find thatHk reduces to
=—=1= 2.7
P=d T G (272 5
3
J3al2 Hi=—Uk— 2 cogK-u(ry)], (2.93
=T(mf+ m3—mym,) 2, (2.7 n

This allows us to characterize the laser potential by a set of

_ -2 2 .
Miller indices m=(m,,m,), and the commensurability ratio =-Uka fd reogK-u(nl, (2.9

031503-8
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FIG. 10. 2D hexagonal colloidal crystal in the presence of a
commensurate 1D periodic potential with perihccommensurabil-
ity vector p=(2,—1), and potential maxima indicated by solid
lines. Dashed lines denote the Bragg rows picked out by the laser
potential minima.

FIG. 9. 2D hexagonal colloidal crystal in the presence of a com-
mensurate 1D periodic potential with period commensurability  where in above the overline denotes a spatial average. The

vector p=(1,-1), and potential maxima indicated by solid lines. |owest order, rank 2, tensor field is given by
Dashed lines denote the Bragg rows picked out by the laser poten-

tial minima.

h{®=aihi(r)3;hy (1), (2.123

where in going from Eq(2.99 to Eq.(2.9b we went over to
a continuum description, an innocuous approximation for the = %|h2|2Kin . (2.12b
smooth|u(r,,, 1) —u(r,)|<a distortions, that we study here.

An equivalent “soft-spin” continuum description of the |t is clear from their definition that these laser-generated
above interaction is in terms of the elementary translationapn-rank tensor fields have strengths proportional g 2"
order parametergg, (r)=pg €' ["**™] with i=1 and 2. «(1,)2". They act as external ordering fields, which explic-
The laser-induced periodic potentidiy (r)=Reh%e'K "] itly break rotational invariancémodulo rotations byr) of
acts like an ordering field on thg= =+ (p;,p,)th harmonics our system and therefore induce throughout our phase dia-
of the fundamental order parametgrg (r), allowing a lin-  gram finite Zr-adic orientational order parameters. These can
ear coupling tap . o(r) = p° ~e*iG-[r+um] be_characterlzec_i by ra_mansymmetrlc _traceless tensors,

pling top-o(1) =pc which are real irreducible representations of the rotation
- group, and are the “angular harmonics” of the lowest order
Hkx= —af dr[hg(r)pg(r)+c.c} (2.108  (rank 2 nematic order parameter

. , @) =g(An —185). 2.1
=—ap°Ghﬁfd2r[e'(G‘K)'re'G'“+c.c.], Qi =Sty =2 9y) 213

(2100 The unit vector defines the principal axis of the nematic
which is finite at long scales only if the condition E§.6) is order, and, given Eq2.12, points parallel or perpendicular

i i i )
satisfied, in which case it reduces to the expression given i{\dg?endmg on.th(-a sign of the coupling betwd@fﬁ. and
Eq. (2.9b, with the identificationU  /a®=2ap2hC . Hence Qi) to the periodic potential wave vectsl. In two dimen-

the periodic potential explicitly breaks translational symme—zIons th_escle Q;r?nkt;ensor r((ajpreser!tatmins are Iwell_— kngwn_btlo
try and therefore induces a finite translational order param—e equwta te.n 0 the one-dimensional compiex irreductle
etersp .k (r) throughout the phase diagram. representations

— qi2né
C. Broken rotational symmetry and anisotropic elasticity Yon=€" (2.14

Throughout our phase diagram, the imposed 1D periodiG;j,q in the presence of these laser-induced ordering fields

potential alseexplicitly breaks down the 2D rotational sym- all ¢, orientational order parameters are finite throughout

metry t0 2; (Ising) symmetry, corresponding to rotations by " shase diagram, no sharp continuotigntationalorder-

m. We can see this more explicitly by noting that the laserj, o nhase transitions are possible in our system. This is in

: _ 0 LiK-
potentialhi(r)=Re hie'™ ] generates a set of even-rank conirast to the melting of the unperturbed lattice, where a
tensor fields, thermodynamically sharp orientational phase transition is al-
lowed between the isotropic and the anisotrogeg.,
(2n) 4 ) ) . ; N
hil"'iZn 9,19 hi(r) ... diy (), (2.1 hexatic, in a hexagonal latticeliquids [5]. Therefore,
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throughout this paper we confine our attention only to phasewhere we have chosen a coordinate system in whichxthe
and phase transitions thapontaneoushpreak thetransla-  andy axes coincide with thé andzx fi principal axes of the
tional symmetry of the explicitly orientationally ordered, orientational nematic order paramefeﬁ?). The two addi-
modulated colloidal liquid phase. o tional elastic constants, a total of four Hg, are consistent
The existence of these orientational ordering fiehds  with two new couplingsa, and a5 allowed by the finite
has important consequences to the form of the colloidal crysyrientational nematic order paramefehz). The four inde-
tal elastic energy. To deduce the form of the appropriaig,endent elastic constants also coincide with the expectation
elastic Hamiltonian, it is instructive first to consider a 2D {hat, with the symmetry betweenandy broken, the elastic

hexagonal lattice in the absence of sutplicit symmetry  energies associated with the strain tensor components
breaking fields. Such a state is characterized by a finite value

of the hexagonal orientational order parametgr[5], with Uy = dxUy , (2.193

the full 2D rotational symmetry broken down to the symme-

try of discrete rotations by /6. Nevertheless to a quadratic Uoe=doul (2.19H
yy y=y: '

order in the strain tensar;; , the energy is invariant under a
full 2D rotation group.

In the absence of a periodic potential the hexagonal ori-
entational order can be furthepontaneouslyproken down
to a lower symmetry. A physically important example is a
uniaxially distorted hexagonal 2D crystal of anisotropic, ori-
entationally ordered, molecules, as, for instance found in
nematic liquid crystal. Such a system exhibitsppntaneous
nematic order paramet®{7’, which modifies the isotropic
elasticity Hy [EqQ. (2.4)]. To a quadratic order in the strain
uj; , three additional energetic contributions

Uyy= 3 (dxUy + dyUy) (2.199

are clearly independent. Although rotations relative to the
orientational uniaxial order is no longer a symmetryH,
gecause only theymmetricstrain tensou;; enters the elastic
energy,H§ is still invariant under “atomic” displacements,

u=60zxr, (2.20

which correspond tglobalrigid rotations of the 2D solid, by
an infinitesimal angl® about thez axis. This latter symme-
5Ho=f dzr[aluijQi(jz)+ az(uijQi(jz))2+ asU;;uj Q2] try is clearly present in an anisotropic lattieéthoutan ex-
(2.15 ternal pinning potential. _ o
In contrast, however, in our system, the 1D periodic po-
are allowed. Because the nematic order is induced spontantential has dixedorientation in the laboratory frame. Hence,
ously, simultaneous rotations of the lattice degrees of freein addition to the uniaxial lattice anisotropy, such a potential
dom and of the nematic axigncoded irQi(J?)), relative to an  also explicitly breaks the symmetry of rotations relative to
arbitrary frame fixed in the lab, are clearly symmetries ofthe lab (and therefore to the periodic potentidtame. It
such a uniaxially distorted lattice. It is not difficult to show therefore picks out a special coordinate system relative to
that this rotational freedom allows us to eliminatg cou- ~ Which the angled is measured.
pling linear inuj;, As discussed above such external potential acts as an ex-
ternal 2n-rank tensor fields, and explicitly breaks the corre-
sponding orientational symmetry. The appropriate elastic en-

Ho = alsf d?r[UeSiP6—3) + Uy (cos 6—3) ergy can be deduced by focusing on the lowest order nematic

. ordering fieldhi(jz). It allows the additional energetic contri-
+U,,2 siné cosd], (2.16 butions
by a judicious choice of the rotation angbeand a uniaxial
area-preserving distortion H, = _f d?r[u;;h{®+QPh(2)] (2.21
2 ijthj ij iy Ay .

ui_>ui+¢i . (217)
that explicitly break the symmetry of rotations relative to the
It is important to note that this is only possible because thérame picked out by the periodic potential.

three independent degrees of freed@ing, and ¢, , at our For purposes of classification of the relative orientations
disposal are sufficient to cancel the three independent lineafiscussed in Sec. Il B, it was more convenient to keep the
termsuy,, Uyy, anduyy in Ha, [Eq. (2.10)]. lattice fixed and to rotate the periodic potential into a par-
Adding H,_ and H__ contributions[Eq. (2.15], to the ticular orientation, uniquely labeled by an integer 2D Miller
ay ag 1 . N A .
Hamiltonian of an undistorted hexagonal lattj@y. (2.4)], ~ ndex vectorp=(py,p,). However, once an orientation has

we find a general elastic Hamiltonian forspontaneously been selected and classified pyto analyze the continuum

uniaxially distorted hexagonal latticgn the absence of an €lastic model and its thermodynamics that follows it is more
external potential[37] given by convenient to work in a cc_)oerate system in which, instead,
the troughs of the 1D periodic potential run along the new
axis. For such a choice of a lab coordinate system,
ng J dzr[zﬂu§y+ %)\xxuix_F %)\yyuiydl' )\xyuxxuyy]v

(2.18 hi(j2): 3IRIZK29,9; . (2.22
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Using this expression fdn{?’ together with that foQ;; [Eq.
(2.13 inside of Eq.(2.2])], and combining it wittH,,, [Eq.
(2.16], we find the following symmetry breaking energetic
contribution, which, in the presence of a 1D periodic poten-
tial must be added té1§ [Eq. (2.18)]:

a,;Scos 6

, 1
Hwﬁhz:f d?r alsq(x(smze— §)+Uyy

_@S_

1
5 + a;Susin 20— ;hScos2)

2

2.2
(223 FIG. 11. Au,,#0 shear deformatioshown for simplicity for
whereh=1K?/h?|2, and angled measures the deviation of a square latticewith principal axes along the (1,1) and ¢11)
the nematic axi$i away fromK set by the orientation of the directions_ in thexy plane. In th_e presence of a trough pote_ntial
periodic potential. While it is still possible to eliminate the (dashed ““e)s,para”e' to thex direction, the particle array, with
terms linear inu,, anduy, by a lattice distortion Eq(2.17), axesx' andy’, can Igwer its mtt_aractl_on energy w_|th the peru_)dlc
in the presence of the external potential it is no longer pos!pOtentlal by rotating in a ClOCkW.'s.e d|r_ect|on to bring the part'des
sible to shift away theuxy term. Selectingp; so as to cancel into better alignment with the minima in the trough potential.
Uxx @nduyy, and combining the resulting,, .+, with Hg,  tic constants. While a similar form was suggested, based on
we find symmetry, by Ostlund and Halperi37] in their analysis of
melting of distorted hexagonal crystal films, theterm ap-
1 1 pearing in our HamiltoniapEq. (2.25] was missed in their
Ha:f d?r| 2puf,+ S hglp, + Ekyyuf,ﬁ A xyUxxlUyy expression. As illustrated in Fig. 11, physically, #ta¢erm is
in 20— ~cos 29
+ auyysin 260 Ecos

2 present because, with troughs running alongxirection,
anxy strain will bring particles in Bragg planes lying in the

, (2.249  troughs out of alignment with the minima of the periodic
potential. This generates a torque which attempts to rotate

h defined rotational v breaki i the lattice and improve the alignment.

W_ere we e_lne rotational Symmetry breaking couplings e gjastic Hamiltoniahl . [Eq. (2.25], together with the

a=a3S andy=hs. Itis clear from the abover andy terms ., mensurate pinning potentidl [Eq. (2.9b], defines our

in H® that, in the absence of strain,,=0, the energy iS  mqge| 2D colloidal system in the presence of a commensu-

minimized by#=0, corresponding to the nematic axis align- yate periodic laser potential. Our aim in the remainder of the

ment withK, imposed by the periodic potential. In the pres- paper is to analyze the symmetry allowed phases and the

ence of fluctuation® will be small but finite. Expandingd®,  nature of the transitions between them embodied in this
above, in these small fluctuations, we obtain a final form ofmodel.

IIl. SYMMETRY-ALLOWED PHASES

the elastic Hamiltonian characterizing our system
H lzf d?r| 2 uu? +E)\ u2 +E)\ U2 4+ Noolool The starting point of our analysis is the model Hamil-
° 2R 2 Ty RaTReeY tonian H=Hg+Hy , obtained from combining Eq$2.9b
and(2.25. Here we have chosdmwithout loss of generality
+2auy, 0+ 23/02} (2.25 K to lie along they axis, i.e., the periodic potential troughs
running parallel to thex axis, a convention that we will stick
to throughout the remainder of the paper. This Hamiltonian
Now, to complete our derivation, we must relate the angleadmits a rich variety of thermodynamically distinct phases.
6, characterizing the orientation of the nematic order to theas discussed in Sec. |, the phase diagrams depend on the
elasticu; degrees of freedom. We expect that the orientationgommensurability ratigp, or more specifically, in which of
of the nematic and hexatic order parameters, present in othe three regimep=1, 1<p<p., or p>p., p actually
uniaxially distorted hexagonal lattice, are locked togetherfalls. The complexity of the phase diagram is highestgdor
Since, in the crystalline phase, fluctuations in this bond ori=>p., and so in order to discuss all the phases possible in our
entational order are in turn locked to the local rotation anglesystem, we focus on these highcommensurability ratios.
induced by the phonon displacements, in the Hamiltonian, It is convenient to enumerate the five allowed phases

Eg. (2.25 we can make the well-known identification starting with the most ordered, which naturally occurs at the
lowest temperatures, and proceeding toward the higher tem-
=13 (dxuy—dyuy), (2.26 perature disordered phases, by invoking two types of disor-

dering mechanismstislocation unbindingndsoliton prolif-
thereby completing our derivation. We find that the resultingeration A detailed investigation of these mechanisms is
elastic Hamiltonian, which characterizes a hexagonal latticeleferred to Sec. IV, where we discuss the nature of these
in the presence of a 1D periodic potential, involves six elastransitions and their hierarchy as a function of temperature
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and periodic potential strengthaser intensity. Here we fo-  extend to all correlation functions, and the periodic pinning
cus on the phases themselves, rather than on their location potential has important qualitative consequences for the FS
the resulting phase diagram. As discussed in detail in Secs. hase that distinguish it from an ordinary 2D solid. The “ir-
and |, the imposed periodic potenti@kplicitly breaks rota- relevance” of the periodic potential means only that a per-
tional symmetry, and therefore all five phases exhibit trueturbative expansion ity , for a sufficiently small value is
long-range orientational order. This external potential alsaonvergentConsequently, average quantities, that are finite
explicitly breaks continuous translational symmetry algng atUyx=0, can be well approximated by théir,=0 values,
(with potential troughs taken to run aloxy down to a dis- i.e., working with H~H,, as is usually done. However,
crete symmetry of translations by the peridaf the poten- quantities thawvanish(or diverge to this zeroth order must
tial. Hence all phases will trivially exhibit long-range order be evaluated to the next lowest orderlp to obtain a non-
in the corresponding translational order parameter, leading twivial (finite) result.
true delta-function Bragg peaks at the multiples of the recip- To illustrate this point, recall that the periodic potential
rocal lattice vector (z/d)y in their structure functions. explicitly breaks rotational and translational symmetry, de-
spite its irrelevance in the FS phase. While the former leads
to uniaxial anisotropy in the hexagonal lattice, the latter is
responsible for the true long-range order in the translational
As in the absence of a periodic potential, the most orderedrder parameteps(r), with G integer multiples of the wave
phase of isotropic particles confined to two dimensions is &ectork characterizing the periodicity of the external poten-
solid. The striking effect of turning on an external 1D peri- tjg|. |n the presence of the periodic potential, even the most
OdiC pOtentia| iS that |t can |ead to two thermodynamica”ydisordered modulated ||qu|d pha@ee be'oWdisp|ayS true
distinct uniaxially distorted hexagonal crystal phases, whichgng-range translational and orientational order. Clearly then,
CI’yStalline, bOth Of these phases eXh|b|t 2D translational AS a concrete examp|e of hOW the periodic potentia' af_
(quasi-long-rangeorder, and are characterized by a finite fects the FS phase, consider the real-space two-point corre-
shear modulus. These emerge as a result of breaking thgtion function of the translational order parameter
translational symmetryi}® T* of the “modulated liquid”
(see below, corresponding to independent discrete transla- pG(r)EeiG-u(r) (3.2
tions bydy and continuous translations alokgdown to 2D
discrete translations generated by lattice vecgrand e, defined by
[Egs.(2.13 and(2.1b)]. Although in the presence of thermal

A. Solid phases

fluctuations dislocations will be thermally nucleated, in the Co(N=(pc(r)p&(0)), (3.29
solid phases they are confined to finite size dipoles with a
zero Burgers “charge.” These, therefore, can be safely inte- — (i (U0 - u()y (3.2

grated out of the partition function with only wedinite
renormalization of the elastic constants. Consequently, a © .
purely elastic description in terms of phonon modgsand =Cg’(r)+{pc){Ps), (3.29

uy is appropriate in both phases.

The LFS and FS phases differ in the importance of thewhere, in Eq(3.29, C£)(r) is the connected part @g(r).
periodic pinning potential. In the FS phase, expected to occuFhe distinguishing feature of the FS phase is the irrelevance
at temperatures higher than the LFS phase, thermal fluctuaf the periodic potentiaHy . Hence in the limit of a weak
tions in the positions of the colloidal particles are sufficientlylaser potential, i.e., small, we can comput€s(r) in a
large such that at long length scales they average away mosbntrolled, convergent perturbative expansionUp. The
[38] of the long scale effects of the periodic potential. Inconnected par€{)(r) is nontrivial even to zeroth order in
contrast, in the LFS phase the periodic potential stronglyu, , and a standard calculation gives
pins the colloidal crystal transversely to its troughs.

1. Floating solid (FS) phase Cg?)(r)N

—, (3.3
A floating solid phase can be rigorously differentiated r["e
from its locked counterpart as a 2D colloidal crystal phase in
which the periodic potential isrelevantin the renormaliza- Wwhere
tion group sense. This implies that at long scales, many, but

not all (see below of the thermodynamic properties of a FS

phase are well described by the elastic Hamiltortign[ Eq.

(2.29], with two coupled‘massless” y, andu, degrees of
freedom, and ignoringd, . Therefore, in many ways a FS For simplicity, we have used the isotropic elastic Hamil-
phase is qualitatively quite similar to a 2D solid without the tonian[Eqg. (2.4)], in place of the correct six elastic constant
periodic pinning potential. In particular, this similarity ex- anisotropic HamiltoniarH [Eq. (2.25], which leads to a
tends to the lattice displacement correlation functions whichqualitatively similar, but anisotropic, power-law decay of
are logarithmic inx andy. However, these similarities do not spatial correlations. We use long wavelength elastic con-

_ |Gl kgT 3u+
kP Mmoo 2utNT

(3.9
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stants finitely renormalized by thermally excited bound dis-have pure power-law correlation functions, decaying to zero
location dipoles. We can compute the persistent part oft long separations. In particular, these include the funda-

Cq(r), by calculating mental translational order parametesg, which display
— /AiG-u(0) (3.5 quasi-long-range order in the FS phase.
{pe)=(e ) ) Having calculated the translational correlation function

in a perturbation theory iUy, which, because of the irrel- Ca(r), the structure function

evance of the periodic potential is convergent in the FS

phase. FoiJ=0 the translational order parameter vanishes _ —iger

like {(pg)o=(L/a)” "c'2 with system sizeL—. Upon ex- S(Q)—rz e 'mCq(rm) (3.1
panding the Boltzmann weiglet (Ho"Hk)/keT in a power se- "

ies i fi | i i forL—
ries in Uy, we find to leading order i)y and forl —e can now be easily obtained. Using Ed8.2a, (3.9, and

1 U n (3.10, and taking advantage of the Poisson summation for-
= — Og kT G —nk) mula to perform the sum over the lattice sitgs, we find
PG A 222 G.nK T 9G,—nK
= n! 5
n n _ n _ 1 o ,
XIT [ o&2r 11 (ril/a) "1 (|ri—rjl/a)~ 7. S(a)~ 2, —— =t :Zw A,6P(g—nK),
=1 =1 <] G |g—-G|*7e "
3.6 (3.12
Here we have used the fact that lor, with
2n
expi, qa-u<ra>}> =exr{2 Ua AgG (1, =1 p) 1 [ Uk
< F{ . o L ] An=to72 | ZaT) @13
3.7 ' B
for £,q,=0, and zero otherwise. We have also introduced &he prime on the summation in E€8.12 indicating that the
phonon connected correlation functi@{®(r): n=0 term is excluded.
GO(r)=1(|u(0) —u(r)|2)s. 3.9 Equation(3.12 predicts true Bragg peak@vith power-

law correctiong at multiples of the periodic potential wave

Averages with elastic Hamiltonian are designated by'€ctor K and pure power-lawquasi) Bragg peaks atll
(--+Yo. Again approximatingH, by its isotropic formH, other reciprocal lattice vector§&, even for those witlG|K.

[Eq. (2.4)], a straightforward calculation in the limit/a Not_e that in a real physical system, the periodic pptential will
>1, r/la>1 gives notin general be a single harmonic, as assumed in our model
[Eqg. (2.5]. Hence we expect that the Bragg peak amplitude
G A, observed in experiments will besamof terms like those
G(C)(r)walog(r/a). (3.9 in Eq. (3.13, and the square of the amplitude of théh
Fourier harmonidJ « of the applied periodic potential. This

Since Uy is irrelevant in the floating solid phase, the inte- ©f course will only modify the prefactors in the different
grals in Eq.(3.6) are IR convergenti.e., for L—x). The  contributions ta(q), predicted for the FS in Eq3.12. We
power laws appearing in the integrand are implicitly under-Schematically illustrat&(q) fotafloatlng soIJd in Fig. 12 for
stood to be cut off below the lattice constanscale by the the commensurability vectorg=(5,0) andp=(2,~2), re-
obvious behaviofsee Eq.(3.8)] of the phonon correlation SPectively, with they axis chosen to point alon.

function lim_.,G©(r)=0. Upon performing the spatial in-  The set of ongy-axis quasi-Bragg peakendicated by
tegrals, which are dominated by the behavior of the conOPen circleginterleaving the true Bragg peakisdicated by

nected phonon correlation function at small distangdg, X 'S) iS the notable feature that distinguishes the FS from
lattice cutoff a), we obtain, up to nonuniversal factors of itS locked counterpart LFS, in whicl on-g,-axis peaks are
order 1, true Bragg peaks.
i 1 Uk A 2. Locked floating solid (LFS) phase
~3 S ) (SemtOe k). (3.1 - o .
{p) =1 n! | 2a2kgT (%6t 96, k). (3.10 At sufficiently low temperatures, the periodic potential

will always be a relevant perturbation, pinning the 2D solid
Hence, as argued above on physical grounds, despite tlie the direction perpendicular to its troughs. Because of the
irrelevance of the periodic potential, the FS displays truelD nature of the pinning potential, a 2D crystal will remain
long-range order in the translational order parametgr  unpinned along the direction of the potential minima, and
with G satisfying G= =nK, with Cg(r) approaching its will be able to adjust freely in that direction. To reflect this
asymptotic value as a power law m Other translational dual character, we therefore call this phase ltoked float-
order parameters, wits not satisfying the above condition, ing solid phase.
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K (4= 7K)

dy dy

X X Uk
Uk(b,)=Ug

a2 (3.173
7

:Ui/(4—7K)/(Ma2)7K/(4—%)_ (3.170h

Since theu, fluctuations in the remaining strongly pinned
olo elastic modes are small, the effective pinning potertial

T can once again be safely expanded in powera,of Doing
gx oo (x this we obtain a result identical to E€B.14b, but with U
replaced byUg(b, ) given in Eq.(3.17.
x Hence, in both strongly and weakly pinned regimes, un-
like the FS phase, the LFS phase is characterized at long
wavelengths by one acoustia,) phonon mode and one op-
tical (uy) phonon mode, with an effective Hamiltonian

O—O—O—O—3¢
O0—000
o
©

*—O—O—O—O
©©00

(@) (b) H=Hart 252 f d2r u3(r). (3.18

FIG. 12. Schematic structure function for the FS phase with the
commensurability vectoréa) p=(5,0) and(b) p=(2,-2), illus-  Here we have introduced a correlation lengttvhich, given
trating a combination of the quasi-Bragg peaks and true Braggqsl(3_14b and(3.17), reads
peak, given by Eq(3.12. Crosses indicate true Bragg peaks, and

open circles quasi-Bragg peaks. U
K

2 K3
At a high laser intensity, such that the bare value of the pua’ K for ua? >1,
pinning energyUy is much larger than the elastic energy £ ?(Ux)= H(a—7) (3.19
wa? for the shortest wavelength phonon mdded therefore K K2 for Uk <1
all wavelength phonon modesur system is in thestrong ua? pa?

pinning regime For a commensurate periodic potential, in
this regime, fluctuations in the lattice positions perpendicular length scales longer than the crossover scale set by

to the troughs are small, and the periodic potertil [Eq. g (3,19, we can safely ignore the spatial derivativeugf
(2.9], can be safely expanded in powers of the corresponderms, and the LFS phase is well described by an effective
ing phonon degree of freedorK,- u, leading to Hamiltonian

HK~const+%UKa*2f d’r[K-u(r)]> (3.14a

1 )z
HLFSZEJ d?r| Byy(dyUy)?+ Bxx(axux)2+§—u§ ,

2
%consH%UKa*ZKZJ d?ruj(r).  (3.14b (320

where

In contrast, aveak pinning regime < ua? consists of
two sets of elastic modes, those wkkck; and those with Byyx=(u+y—a), (3.21)
k>k., where k.=K/b, is a crossover wave vector for
which the elastic energy densiy(k.a)? just balances the
pinning energy density (b, )K? at the same length scale.
Since the pinning energy is subdominate to the elastic energy
for modes withk>k., we can simply integrate out these
weakly pinned modes perturbatively Wy . This results in
an effective strength of the pinning potential given by

Byx=Axx - (3.22

We can now compute the translational order parameter
correlation function and the structure function that character-
ize the LFS phase. Repeating first the calculation for the
persistent part determined byg), we immediately find,
UK(b*)=UKb_7’</2. (3.15 that., as in all the phases in the presence of Fhe_z periodic po-

* tential, {pg)# 0 for G=xnK. However, the distinguishing

After equating this with the corresponding elastic energyfeature of the LFS is that this average is finite &t G

wu(asb,)?, we find parallel to K, by virtue of the finite pinning lengthf [Eq.
B (3.19]. This result can be immediately seen by noting that
a2\ 2= for G||K, the logarithmically divergentwith L) (u2), cor-
b, = Uyg ' (318 relation function doesiot appear in{pg)g, where the sub-
script 0 again represents an average with the elastic Hamil-
which, when inserted inside E€3.15), leads to tonianHg, only. Instead we have
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<pG>:e—GZ<u§>/z (3.233 c(r) :e—(1/2)[G)Z(Gxx(r)+ZGXGnyy(r)+G§ny(r)],

(3.28

(3.230  where Gj;(r)=([uj(r) —u;(0)][u;(r) —u;(0)]) is the con-
nected phonon correlation function computed with the full
Hamiltonian. In the weakly pinned regime, for small length
o ) _ scales, all phonon correlation functions display the usual 2D
whose logarithmic correlations are cut off Bt=¢, and o ; . . ) o
logarithmic growth, which, in the isotropic approximation,

which is therefore finite even in the thermodynamic limit. . . I
We can also obtain the above result via a straightforward‘e" using Hamiltoniari, [Eq. (2.4)] leads to the power-law

matching calculation. The difficulty of computing transla- correlation forcg)(r) that we found in Eq(3.3) for the FS
tional correlation functions in the weakly pinned regime of ph:?\se. Howeve_r, for Ie_ngth scales longer f[Be[E_q. (3.19],
the LFS phase is that for long length scalesf), despite the while G_Xx(r) will continue to'grow Ioganthmlcally, S.UCh
weakness of the pinning potential, a direct perturbative ex9"OWth inGyx(r) andG,,(r) will be cut off by the pinning
pansion inUy is divergent because of its relevange the  1€Ngthé. Consequently, in the LFS phase we find
renormalization group sensénside the LFS phase. The

a 76/2

3

which only involves the “massive’u, degree of freedom,

7 7

power of the renormalization group is that it allows us to C(GC)(r)~ a & a Gy, (3.29
relate this difficult weakly pinned, smally regime to the §
strongly pinned regime, whelg, has grown to the magni- where
tude of the elastic energya?, and can therefore be treated
as a “mass,” as in Eq(3.14h. We can apply this matching G2 KkaT
procedure to the computation ¢ps(Uk)) by using a rela- 76 = —x_B (3.30
tion between the weakly and strongly pinned regimes, 2T By Byx
namely,

Y which reduces tong =(G%/2m)[ksT/u(2+X\)] when

(pa(Uk))y=b" "X pg(Ub?™ /2)), (3.24  the effect of the periodic potential on elasticity and renormal-

izations due to dislocation pairs on the effective elastic co-
obtained using the scaling dimension of the operatoand  efficients are neglected. A discrete Fourier transform of this
the RG eigenvalue ol , both easily extracted from Eq. correlation function gives the corresponding structure func-
(3.3. Choosing the arbitrary rescaling factors b, such that  tjon
Uk(b) is in the strongly pinned regime, whetdy(b, )

= ua?®, Eq.(3.24 becomes Bg

—— + A8 q-G)|, 3.3
q-c2- 7, e (@-G)|, (.31

S(q)=>,

)7@’(4—7@ G

_ K 2
= — . .2
{pe(Uk)) (MaZ (pe(nal). (329 where the quasi-Bragg peak amplitulg is given by

Since the right hand side is in the strong coupling regime, it o a "Gy (3.323
can be easily computed using the coarse-grained Hamil- G7l ¢ '
tonian[Eq. (3.18]. Doing this we find
6 /(4-7) uJe” for —=>1
—| =K (112)7gIn(Ka) a
(pa(Uk)) az) e . (320 ; Iz (3.928
. . o . uZ7e, 47 g, Uk <1
which in the weakly pinned regime is equivalent to the result K ua?
given in Eq.(3.23D.
Note that the nontrivial nonlinear power-law response ofand the Bragg peak amplitudhes ,
the translational order parameter to the periodic laser poten- _
tial, predicted by Eq(3.26) is only a nonanalytic piece of the a\”e
full response, which includes an analytical background. Ac* ¢, 0 g (3.333
Hence, although at low temperatures, such thgt/(4
— k) <1, the full response in thd c— 0 limit is dominated _ U
by the nonanalytical pafEqg.(3.26)], at higher temperatures, U}ZG/Z for K2 >1
the ever-present linear piece of the analytical part will domi- pa
nate, and experimentally one should instead observe * 96,0 _ _ (3.330
u2re’mmd g ZK <9
K L]
(pc(Uk))~Uk. (3.27) ua?
For our highly anisotropic system, the connected part ofvhich is finiteif and only if G is parallel toK. As a conse-
the correlation functiorC¢(r), is given by guence of the discussion after H§.26), the amplitudeAg
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dy 1 dy
X Y a
A 1 { St ' """""""""" @ - .
° o o|C
o Fo %o FIG. 14. 2D colloidal smectic phase in the presence of a com-
¥ Ax °l° qx mensurate 1D periodic potential with perigl commensurabilit
x X . . p . . y
N parameteip=3, and potential maxima indicated by full horizontal
* X lines. Dashed lines denote the maxima in the smectic density, which
b are pinned inside the minima of the periodic laser potential.
Fig. 14, can be equivalently described as a periodic stack of
& x 1D liquids.
(a) (b) It is important to note that, despite their name, the smec-

. . _ tics discussed here are fundamentally distinct from the smec-

FIG. 13. Schematic structure function for the LFS phase withtic phases found in liquid crystal materials and substrate-free
the commensurability vectoi®) p=(5,0) and(b) p=(2,-2), i-  gmectics discussed in R¢B7]. The most important distinc-
lustrating a combination of the quasi-Bragg peaks and true Bragg,, js that in liquid crystal smectics and those without an
peaks, given by Eq3.31. . L . . .

underlying pinning substrate, the orientational symmetry is
, o o broken spontaneouslyuniaxial anisotropy notwithstanding;
will also have a backgrozund analyticy , whichinaweak  gae gec. 11 @ leading to a soft Laplacian-curvatufeather
pinning limit scales adJ [see Eq.(3.27], and therefore at  than gradient-tensigrelasticity, which preserves this under-
higher te.mpergtures will dominate over the nonanalyticaiying symmetry even in the smectic phase, where it is non-
part predicted in Eq(3.33b. o linearly realized[39,40. In fact, such substrate-free 2D

We illustrate schematicall$(q) in Fig. 13 for the com-  smectics, because of the softness of their elasticity, are well
mensurability vectorg=(5,0) andp=(2,~2), respectively, known to be unstable to thermally driven unbinding of dis-
with the'y axis chosen to point aloni. locations, and at scales longer than the distance between

These predictions for the structure function of the LFSthese free dislocations are therefore indistinguishable from a
phase, displaying amplitudes that vanish as nontrivial powerematically ordered 2D liquid41]. As recognized by the
(determined by a continuously varying exponezt) of the  authors of Ref[37], such a thermal instability of substrate-
periodic potential strengtfEqgs.(3.32h and(3.33h] provide  free 2D lattices precludes the existence of a thermodynami-
a theoretical explanation for observations of Chowdhetry cally distinct intermediate 2D smectic phase in which only
al. [16]. one set of Burgers vectofs.g., along the uniaxial directipn

unbind. However, in strong contrast to those rotationally in-
) variant systems, in the 2D lattices studied here the periodic
B. Smectic phases (lasey potentialexplicitly breaks rotational symmetry, bind-

As first pointed out by Ostlund and Halperi87], in  ing by a linear potential dislocation pairs with Burgers vector
uniaxial two-dimensional lattices, dislocations with Burgershaving componentslong K. Consequently, such disloca-
vector along and perpendicular to the uniaxial axis will ge-tions remain bound even when those with Burgers vectors
nerically have different core energies, and will therefore proferpendicularto K unbind, and therefore allow the existence
liferate at different temperatures. This will consequently al-of 2D smectic phases that are thermodynamically distinct
low the possibility of a phase that is intermediate between drom a liquid.
fully ordered crystal and a completely disordered liquid. Deep in such a smectic phase, thgr) phonon field,

In a commensurate orientation, such that Bragg rows cowhich (see Fig. 1% describes local fluctuations in the
incide with the periodic potential troughs, we would expectmaxima positions of the 1D density wave, is the only re-
dislocation pairs, with Burgers vectors parallel to the potenimaining important degree of freedom. The ever-present
tial minima, to unbind first. We refer to the resulting class of bounddislocation pairs and the density of vacancies and in-
thermodynamically distinct phases as smectics. Their maiterstitials are “massive” degrees of freedom. They can be
common characteristic is that they display a finite elasticeasily integrated out, leading only to a finite renormalization
modulus for shear deformations perpendicular to the Burgersf elastic constants fou, deformations, and therefore are
vector of unbound dislocations, but do not resist shear parnimportant in a static theory.
allel to them, possessing only liquidlike correlations between In close analogy to the translational order parameter of
the corresponding “atomic” rows. Consequently, such 2Dthe 2D crystal, a smectic phase is distinguished from a liquid
smectics display a 1D periodicity perpendicular to the Bur-phase by a finite translational order parametgs=¢e'Y, but
gers vector of unbound dislocations, and, as illustrated imwith a single (rather than a sdq. (2.2)]) reciprocal vector
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G=Gy=(2m/a)y. It is related to the total molecular density dy Qy
via a standard relatiof89] K

p(r)=Rd po+€Ypg(n)], (3.39

wherep, is the mean density of the smectic.

Of course, in the presence of a 1D periodic potential, a
smectic phase is a thermodynamically distinct phase only if
G=(2n/a)y differs from the wave vectoK characterizing
the external potential and the modulated liquid. Commensu-
rate smectic phases, which we focus on here, are equiva-
lently characterized by the ratio of their periado that of
the periodic potentiald, with commensurability ratica/d
=pe Z. A p-smectic phase then spontaneously breaks the
discrete translational symmetfy;® T* of the modulated lig-
uid, with its equal occupancy of each potential minima down
to T®T*, with only everypth minima equivalently popu-
lated. Clearly therp=1 smectic is indistinguishable from a (a) (b)
fully disordered modulated liquid phase. ) ] )

Above symmetry considerations uniquely specify the FIG. 15. (a) Schematic of the structure function for the floating

Hamiltonian that characterizes tpesmectic phase smectic phase, characterized bygpaxis quasi-Bragg peakepen
' circles and true Bragg peakgrosses (b) Schematic of the struc-

ture function for the locked smectic phase, characterized by on-
HSm:j dzf{%[Bxy(ﬁny)2+ Byy(gyuy)2] gy-axis true Bragg peaks, with small and large crosses indicating
spontaneously and directly induced translational order.

O—O—O—O—3¢
O0—000
VEVENVIL V)
H—HAHH)E

9x dx

*—O—O—O—O
©©00

%
£a3

—Uya %cogKuy(n}, (3.35
nected part of the translational two-point correlation function

which, not surprisingly, is an anisotropic scalar sine-Gordon
model in the phonon field(r).

Given the form of the Hamiltonian in Eq43.35), there is clO(r)~
a close similarity between the properties of the smectic and ¢
the 2D crystal studied in Sec. Il. The quantitative differences
between these phases are due to the distinction between the
vector [u=(uy,u,)] and scalar §,) natures of elastic de- where
grees of freedom in the 2D solid and smectic phases, respec-
tively. More specifically, in close analogy to the 2D solid >
phase, we find that for a fixed integer commensurability ratio Mes= ke TG
p, there exist a low temperature “locked” and higher tem- 21\By,Byy
perature “floating smectic” phase. These are distinguished
by the importance of the periodic pinning potential, which is o )
relevant(in the RG sensein the LSm phase, acting as a Ethe exponent characterizing the FSm phase, in analogy to
“mass” for u,, and irrelevant in the FSm phase, where for 7G [Eq. (3.4], of the FS phase.

(3.3

|r| 7Fsm’

(3.37

most static properties it can be ignored. The disconnected part of the smectic translational corre-
lation function is finite only atG=nK(ne Z). The corre-
1. Floating smectic (FSm) phase sponding floating smectic structure function is given by an

. . . . expression similar to the H&q. (3.12]. The only difference
In the “floating smectic(FSm phase,” thermal fluctua- is that 775 of the FS phase is replaced by, of the FSm
tions in the position of the layers are sufficiently large that atphase and the summation oV@fis a sum over integer mul-

long length scales they average away many effects of thg, g of 277/a. Consequently, one expects to see sharp peaks
periodic pinning potential. Hence, many of the static proper-

. . -only on theq, axis, with power-law peaks & #nK, and
tles_ of the FSm pha§e can be well described by _the Ham'lfrue Bragg peaks @ =nK. This FSm structure function is
tonian[Eq. (3.395], with Ux=0. However, as we discussed ; - PR
. O . _ schematically displayed in Fig. (.
in detail in our analysis of the FS phase, despite the RG
irrelevance of the periodic potential, continuous translational
symmetry is still explicitly broken by it, which leads to true
long-ranged translational order in the smectic order param- As the temperature is lowered, the periodic potential be-
eter pg for Gy at multiples of the reciprocal lattice vector comes relevant, pinning the smectic layers. The resulting
K9, characterizing the laser potential. “locked (LSm) smectic phase” is characterized by long-
Calculations that closely parallel those of Sec. Ill A 1 for range translational order, and, as illustrated in Fig. 15, dis-

the FS phase, lead to power-law correlations in the conplays true Bragg peaks at all values of thegypaxis recip-

2. Locked smectic (LSm) phase
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dy transitions are in a differerdsing model and other models
X with a discrete symmetjyuniversality class.

A. Roughening transitions

X Phase transitions that fall into the roughening transition

universality class separate a low temperature ordered phase,

in which a potential Goldstone mode is strongly pinned by

an external periodic potential, from a quasi-long-range or-

—_—— dered phase, in which the periodic potential is irrelevant in a

qx renormalization group sense. The locked floating solid to
floating solid and locked smectic to floating smectic phase
transitions, discussed in Sec. lll, fall into this broad univer-
sality class, although they differ in details that we discuss
below.

Despite these small differences the analysis of these tran-
sitions are quite similar, and can be done via standard per-
turbative momentum-shell renormalization group transfor-
mation[43,42. Since smoothlocked and rough(floating

FIG. 16. Schematic of the structure function for the modulatedphases are distinguished by the relevance and irrelevance of
liquid phase, characterized by op-axis true Bragg peaks located the periodic potential, respectively, we can find the transition
atn(2m/d). temperature by analyzing the behaviorttf [Eq. (2.5)] as a

function of length scale. We separate the phonon field, which
rocal lattice vector§&=n27/a. At long scales, the effective for a solid phases is a two component vector and a scalar for
elastic Hamiltonian that characterizes this phase is simply @ smectic, into the high and small wave vector modes,

L u(r)=u=(r)+u(r), (4.2
_Z P 2,2
Hism=3 £ f druy, (338 and integrate the high wave vector part(r) perturbatively
in Uk with nonvanishing Fourier components inside a thin
with & given by Eq.(3.19. momentum shell:

Ae '<|q|<A. 4.2
3. Modulated liquid (ML) phase

The modulated liquid phase is the most disordered phas%{ve then rescale the lengths and long wavelength part of the

which occurs at highest temperatures and doespointane- elds with
ouslybreak any symmetries. It is characterized by a vanish-
ing shear modulus, unbound dislocations, the absence of
massless Goldstone modes, and a discrete symmetry of trans- us(ry=e?u’(r’), (4.3
lations along they axis by a periodic potential constadt
The corresponding structure function of this explicitly orien- so as to restore the ultraviolet cutoff backAe=2#/a. Be-
tationally ordered phase, illustrated in Fig. 16, is a set of truecause the pinning potential nonlinearity is a periodic func-
Bragg peaks at multiples of the reciprocal lattice vedfor tion, it is convenientbut not necessayyo take the arbitrary
=2/d of the periodic potential. field dimension to be

Finite linear translational order parameter susceptibility
guarantees that the average order parameter is linear in the ¢=0, (4.4
strength of the periodic potential. Therefore, as is clear fro
Eq. (1.17), the strength of the Bragg peaks scales a&silze
of the input laser intensity, proportional tdx , as observed
in experiments by Clark and co-workdrk6,25.

r=e'r’, (4.33

rT{hereby preserving the peri@=27/A under the renormal-
ization group transformatiofd4]. Under this transformation
the resulting effective Hamiltoniat] =H+Hy , can be re-
stored into its original form with effective-dependent elas-
tic andUy couplings.

IV. PHASE TRANSITIONS For the periodic pinning potential couplindy , in a stan-

» . _dard way[43,35 we find
Phase transitions that take place in our system fall into

two broad classes: roughening and melting. However, for Uk(l)=U 2~ (1K)~ (4.5

high values of the commensurability rato (p>p.) these

classes are mathematically related to each other by the duaMhere<u§>> is to be computed with the elastic Hamiltonian
ity transformations[42,8], and are both examples of the appropriate to the phase being analyzed, keeping only modes
Kosterlitz-Thouless-type transitions, with kinks and disloca-within an infinitesimal momentum shell near the zone
tions unbinding, respectively. Fqu<p., the roughening boundaryA. Hence the nature of the pinning by the substrate
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potential and the transition temperature obviously depend on

the degree of the translational order in the system, i.e
whether the phase is solid or smectic.

1. Locked floating solid to floating solid phase transition

PHYSICAL REVIEW B3 031503

27dg ay+(ay—ay)sine

To determine the critical temperature for the LFS-to-FS

phase transition, we compute tha§)> average using the
anisotropic elastic Hamiltoniahly [Eq. (2.25] describing

the 2D solid phase in the presence of a 1D periodic potential.

Rewriting H¢, in terms of Fourier transformed phonon fields
u(q), we find

d’q [1
HeI:fW[E(Bqui_FBqus”ux(q”Z

1
+§(nyq§+ Kyyq)z/) | Uy(Q)|2+ 5qquux(q)uy( - Q) )
(4.6
where

Bro= Mo (4.73

Byx=u—a+vy, (4.79

Kyy=N\yy (4.79

Ky=u+taty, (4.79

O=p+Nyy= 7, (4.7¢

which, after a simple Gaussian integration, leads to
2 >

W |
=4

where we have introduced the shorthand notatiﬁ@

= [~[d?q/(27)?] for the integral over the momentum shell.
In the dilute limit, and neglecting effects of the periodic po-
tential on the elastic coefficients, this reduces to

kgT

R (4.9
xHy

Ky 02+ Ky 02— ——5
Yy Xy
g  ByUit+ Byl

KgT
2 B
u =
<y>> 2

4.9

with =2 (2, +\)/(3u+N\). In order to computéu?) .
in general, we use an ellipticalolume conservingmomen-

tum shell defined by major and minor axed,
=AVKyy /Ky, and Ay=A VK, /K,y We find
kgTcy
(U2y. =—o |, (4.10
Y7 2w K Koy

where we defined a dimensionless numbggiven by

. C1 = "~ l
Yo 2w ay+ (ay—ay—ayy)Sif o+ a,ysin*o
(4.11
and
BXX
a= K—Xy, (4.123
B
= X
a,= K,,’ (4.12p
52
ayy= KKy (4.129

Upon combining Eq(4.10 and(4.5), we find the eigen-
value of the substrate potential to be

, kgTcy

Np=2-K{———=—, 4.1
P Yam Ky Koy 413
which, after setting
Ap(Tpg)=0 (4.14
gives us the depinning transition temperatlifg
8 d\?
kBTpS:C_l\ KnyXy(Z y (413

which separates the LFS and FS phases. In the dilute limit
the transition temperature reduces to

d 2
kBTpS: 877# E) .

2. Locked smectic to floating smectic phase transition

(4.1

As discussed in Sec. Il B, at low colloidal densities our
system can exhibit LSm and FSm phases, and therefore un-
dergo a phase transition between them in the roughening
universality class. Analogously to the LFS-FS phase transi-
tion analyzed above, we can calculate the pinning tempera-
ture for the LSm-FSm phase transition by computing the
<u§)>, that goes into Eq(4.5), and finding the temperature
at which this RG eigenvalue vanishes. Using the Hamil-
tonianHg,,, [Eq. (3.35] appropriate for the smectic phases
and computing to zeroth order in the pinning potentigl,

we find
> kgT
(ud). = f -5 (4.17
S Bxyq>%+Byyq32/
_ KT 4.18
2m\ByyByy '

where for convenience we again used an elliptical momen-

tum shell with axes\ By, /By, and A yB,,/B,,.
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After combining this result with Eq(4.5), we find that Away from the dislocation core, for a commensurate ori-
translational pinning by the periodic potential is relevant in aentation defined by the shortest direct lattice vector pointing
floating smectic phase foF <T,gy,, with Tysy, given by parallel to the troughsR;=n;e;+n,e,, labeled by direct

lattice Miller indicesn; andn, defined by Eqs(2.6)—(2.8),
d\2 the displacement vectar for the active type | dislocation is
kBTpSm=8m/ByyBxy<2—) . (4.19 given by

As discussed in more detail in Sec. V, the elastic moduli by VB
in Egs.(4.15 and(4.19 are functions of the strength of the U=x5_tan <B2|’ (4.2

yX

pinning potentialUy , which in turn is proportional to the

input laser intensityl;,. Hence the resulting functions .1

Tps(lin) and Tyg(lin) in principle determine the LFS-FS

and LSm-FSm phase boundaries displayed in Fig. 5 for col- b.=|R:=a\nZ+n2+n.n, 4.2

loidal densities commensurate with the 1D periodic poten- 7= IRl 1 4.22

tial. Melting of the LFS phase via unbinding of these defects is
identical to the vortex unbinding transition of an anisotropic

B. Dislocation unbinding transitions 2D XY model. A standard calculatidd,5] leads to the pre-

In the analysis of Sec. IV A, where we studied a thermaldiction for the LFS phase’s melting temperature
depinning transition within the solid phase, we implicitly as- b2
sumed that the dislocations that distinguish the 2D solid and __ "5 5
smectic phases from the higher temperature disordered KeTirs-Lsm gV DoByx 4.23
phases remain bound. Hence these calculations for the pin-
ning transitions and Eq$4.15 and(4.19 remain valid only ~ and all other concomitant Kosterlitz-Thouless phenomenol-
if they fall below the corresponding dislocation unbinding ©9y. This implies an exponential growth of the translational
melting transition temperatures, which we now compute. ~correlation lengtt4]

1/2
1. Locked floating solid to locked smectic phase transition E~aed T Tirstsnl ™ (4.24

Itis easy to see from the effective Hamiltonibles [Eq. with ¢ a nonuniversal parameter, andimiversalratio of the
(3.20] that the most striking consequence of the 1D periodicum in the eometricpmean of ’the shear and bulk moduli
potential is that it leads to the LFS phase, in which the phol P 9 '

non degree of freedom,, corresponding to displacements By{Tips-sm aNAdBud(Tips.sm 10 Tirs-Lsm .[45]'
transverse to the potential troughs acquires a “madsq. The resulting high temperature phase is the LSm phase

(3.19], and as a consequence is effectively suppresseél.%]’ for low colloidal densitiegi.e., high commensurability

Therefore, this phonon mode can be safely integrated ouf@ti®P), and a modulated liquid for high densitigs<1; see
elow), for which the smectic is indistinguishable from a

leaving an effective anisotropic 2®Y Hamiltonian, with ~ ~=™
temperature and potential strength depenééectiveelastic I|qy|d. Because_of the unusually strong growth of the trans-
constants lational correlation lengtl¥; [Eq. (4.24)], the phenomenol-
' ogy of the LSm-FSm phase transition that we studied in Sec.
IV A 2 will be modified for T— T|rs_ s by @ long crossover
HLFS=%J d?r[Byx(dyUy)®+Byy(dxUy)?],  (4.20  from the crystal to smecticor liquid) elasticity.
It is important to note the distinction between this aniso-
Héopic 2D XY melting of a LFS phase into a LSm phase, and
an analogous type | melting mechanism of Ostlund and Hal-
erin for melting of uniaxially anisotropic, but substrate-free
D solids[37]. In the latter case, thermal fluctuations desta-
bilize the resulting 2D smectic phase by further unbinding
type Il dislocations, asymptotically converting it into a lig-
notation of Ref[37]) with Burgers vectors: b, = = b (see qid. Here, because oI the pinning pptential, type I Qisloca—
Sec. Il B aligned parallel to the trough directigwhich we tions [_e.g., £y for_ p=(p.0)] remain bound by_a_llnear
continue to take along theaxis) can be thermally unbound. potent_|al. The resulting LSm phase Is _the_re_fore d.'Stht from
jﬂe (orientationally orderedmodulated liquidin which type

In the presence of a periodic potential, oppositely charged ™. ) .
dislocations, with Burgers vectors not satisfying the abov I d|slocat|pns are also unbouhd;epa_\rated from it by a ther-
modynamically sharp phase transition.

condition (type Il dislocationg, are bound by a potential
which grows linearly with the separation and therefore can-
not thermally unbind. This discussion is consistent with the
mapping ontascalar Coulomb gas Hamiltonian, expected to A floating solid phase can metontinuouslyvia unbind-

describe logarithmically bound type | dislocations, embodiedng of the type | dislocations. However, in contrast to the
in the 2D anisotropicKY model Hamiltoniar Eq. (4.20]. similar melting of a locked floating solid phase, here the

that describes a locked floating solid at scales longer than t
correlation length¢ introduced in Sec. Il A 2.

The melting of the LFS phase can be understood in term
of dislocation unbinding. However, in contrast to melting in
the absence of an extern@.g., substrate or lagepotential
[5], here only the so-called type | dislocation pafis the

2. Floating solid to floating smectic phase transition
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dislocation unbinding in the displacemantproceeds in the tion. For a finite density of dislocations, we define a singular
presence of another spectator massless phonon mgde strain vs=Vu; due to a dislocation density(r), with the
which is coupled to it. Consequently, as we will show below,standard relation

this transition is anontrivial extension of the Kosterlitz-

Thouless theory, and, to our knowledge is, heretofore unex- V Xvs=gb(r), (4.29

plored. Once these type | dislocations unbind the most likely

resulting phase is the floating smectic php4g). IézZ bﬁ”rﬁ(z)(f—fi), (4.30
Fi

The phenomenology of the FS-FSm melting transition can
be most easily analyzed by the following steps. Wentro-
duce dislocation degrees of freedom into the elastic Hamil- =&bsn(r), (4.3
tonianH [Eq. (2.29)], (ii) perform a duality transformation ) ) )
to convert the resulting Coulomb gas Hamiltonian into awhere{n,} are integer dislocation charges. A general solu-
modified sine-Gordon model, ar{di) compute the disloca- tion to the above equation is givém Fourier spaceby
tion unbinding temperature by analyzing the resulting dual _
model. iqx &, .

To execute these standard steps, it is convenient to first V() = o b(a)+igx(a), (4.32
perform the following rescalings of spatial coordinates,

wherex(q) is an arbitrary, single-valued function, which for

1/4
X—=X(Bux/Byx) ™, (4.258 convenience and without loss of generality we can set to
1a zero. After expressing the gradient of the total displacement
Y=Y (Byx/Byod ™, (4.25h field u, in terms of the dislocation pawt, and a single valued

which leads to the Hamiltonian phonon fieldu

Vu,=v¢+Vuy, (4.333

1
Hes=5 f A2r[K(VUy) 2+ Cy( Ayl 2+ Cy (dyy)
Vul=Vu,; (4.330

+ 2Ny (dyUy) (dyuy) +2( e — y) (dyeuy) (dyUy) 1, . . - . I .
(B (yUy) + 2= ) () ()] inserting this intoHgs, we obtain a Hamiltonian that in-
(4.26 cludes both the elastic and dislocation degrees of freedom:

where we dropped the prime on the rescaled coordinates, and 1 d%q [ 2b;
. . n

defined elastic constants Hstﬁf wI?[Axy%ﬂw-mqi]n(q)uy(—q)

K«x=VByxByx, (4.273 (@2
nq
2

Cy= KXny/Bxxa (427[:) + bﬁKXT] + HFiU]. (434)
Cy=K,Kyy/Byy. (4.279 After putting the system on the lattice, going to the grand

) ) ) ) canonical ensemble for dislocations, and adding the disloca-
Because in the presence of dislocations the displacemegb, core energyE, to account for the energy coming from

field u, is a multivalued function, it is essential to distinguish gport length scalegot included in the above analysithe
the last two terms in Eq4.26. In contrast to conventional 4¢a) partition function is given by

elastic theory, where dislocations are bound apd a well-

defined function, here these tergennotbe transformed into Hesa S Eo?

each other by an integration by parts. Keeping track of this 2= [du]{;} SR (439

distinction ensures the proper form for the elastic constants '

of the resulting smectic phase. _ In the above, for convenience, we chose to measure all the

In this new rescaled coordinate system, a type | dislocagnergies in units okgT.

tion located at the origin, with a Burgers vectorb;%, can To analyze the dislocation unbinding transition, it is con-

be represented by a displacement field venient to perform a duality transformation on the above
b HamiltonianHggq[42,8]. To do this we introduce an auxil-

ug==x N tant X)_ (4.29 iary Gauss.ian fie_qub to decouple the C_oulomb interaption

2 X between dislocations, and use the Poisson summation for-

) ) ) mula to perform the summation over the set of lattice inte-
However, in contrast to the analysis of the melting of the LSgers{nr}, obtaining

phase above, in the presence of a fidife, deformation, the

form of type | dislocation given in Eq4.28 does not cor- y

respond to a relaxed, displacement which minimizes the Z:f [de¢][du]e ™, (4.39
energy. Consequently, we expésee Eq.(4.34)] a bilinear

coupling between the dislocation density and thedistor- ~ where
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K_l
Ho= [ 2| S5 1V g2Vl 9 +10)] | +Hed ul.
(4.3

To obtainHy [Eqg. (4.37)], above, we defined a fielé(r),
whose Fourier transform is given by

1
0(q)= ?[)\xyq)z/'i'('}’_ﬂ)qi]uy(Q)a (4.39

and used/\(¢) to denote the well-known 2-periodic Vil-
lain potential defined by

e*VV(¢) = E e~ Ecn2+in¢.

n=-—o

(4.39

At low fugacity (large core energythis potential reduces to
a cosine function, leading to

-1

PHYSICAL REVIEW E63 031503

where 74 is determined by

2

ngzbﬁ[<¢2>>_<02>>]a (4.42

with the right-hand side easily computed from the quadratic
part of the dual Hamiltoniai 4 [Eq. (4.37)]. Specifically,

d’q 1
(p?)-= KXL(ZT)z P (4.43
- VBZX:TBW (4.44
and
d’q [hyyty+(y=m)ag]?
(3= [ L9 Dot OZRGT, ey (4454

>(27T)2 q4

K
Hdzf dzr[%|v¢|2—g cogbs(d+i60)]1 +Hedul, :f dzq2 N2y Oy 2Ny (y— ) 0505+ (y— )20y
(4.40 =(2m7  g'le.as+cyay— 6°azay/ (Kua?) ]
(4.45
with g=2e" Ee.
Now the dislocation unbinding transition in the original N2 Cot N — ) Cat (v— )2
model of the floating solid is determined by the vanishing of —22 oY~ WCat (v u) 4
the RG eigenvalue ofj(1) cosine nonlinearity in this dual 2Ky Kyy
model, defined by (4.450
g(1)=ge? 72, (4.4)  where
|
f2wd0 azsinto e
Co=| =— , .
> Jo 2m [ax+ (ay—ay,)si ][ ay+ (ay— a,— ayy)Si 6+ ay,sin' ]
27d 6 2a%,cog 0 sir’g
C3EJ' - - - - , (446b
0 27 [a,+(ay—a,)siro][ay+ (ay,—ay— ayy) S+ ay,sin'f]
ijda aZcog' 0 (4.460
C = e . .
“ o 2m [a,+(ay—ay,)siPd][ax+ (8, —ax— ay,)Sif 0+ a,ysin' 6]

Upon combining these results, we find that a floating solicthat of the LFS phase, i.e., for all range of parameters,

phase melts into a floating smectic phase at

2

b5

)\in2+ )\xy( Y= m)Cst(y— M)ZC4
TFS-FSm:E

v KVVKXY

\} BxxByx_

1

(4.47

which reduces to the melting temperatufees  sm [EQ.
(4.23] of the LFS phase in the limK,y ,Kyy— 2, in which
the spectator phonam, mode is frozen out. Not surprisingly,
we find that the extray, fluctuations of the FS phase always

Tes-Fsn< TLFs-Lsm-

We now demonstrate that once type | dislocations unbind,
the resulting Hamiltonian is that of a floating smectic, de-
scribed by the Hamiltoniat g, given in Eq.(3.395. To
see this return to the Hamiltoniaies4[Eq. (4.34)], and note
that once dislocations unbind and therefore appear in large
densities, the discrete dislocation figld can, to a good ap-
proximation, be treated as a continuous dens(ty). Within
this Debye-Huakel approximation the dislocation degrees of
freedom can be easily integrated out of the partition function
[Eg. (4.39] by replacing the summation ovef in Z by an

suppresshe melting temperature of the FS phase relative tantegration. Simple Gaussian integrations over dislocation
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densityn(r) and the single valued field, then lead, in the
long wavelength limit, to an effective floating smectic
Hamiltonian

1
Hom=> f d2r{k(dZuy) 2+ Byy(dxly)+Byy(dyuy)?},
(4.48

PHYSICAL REVIEW B3 031503

interest in this problem, is the light-induceeentrantmelt-
ing. As we shall explicitly demonstrate, this melting reen-
trance is agenericconsequence of short-ranged screened col-
loidal interactions and thermal fluctuations, and hence should
be prevalent in such 2D systems.

To demonstrate the reentrance as a function of laser in-
tensity, we study the shape of the melting curves for the
LFS-ML, LFS-LSm, and FS-FSm phase transitions, which

where we have restored the original scaling of the spatialye generally denote byf,(Ux). The common feature of

coordinateg Egs. (4.25], and derived the effective elastic
constants for the resulting FSm phase:

these transitions is that they are all driven by the unbinding
of type | dislocations, withT,(Uk) [see Egs.(4.23 and
(4.47] at least in part determined by the renormalized values
of the bulk modulusB,, for compression along the troughs
and the corresponding shear moduys. Our goal then is

to determine how these moduli depend on the potential am-

(v—7)? [2E;

K= ———— , 4.49
(nty—a)?| p2 (4493
Apuy— a?

YTy (4.49h

2
_ xy
By = Ay~ (4.499

We note thatB,, vanishes asy,a—0, as it must in this
rotationally invariant limit, in which one must recover the
rotationally invariant 2D liquid crystal smectic elasticity
[39].

Another equivalent but considerably more straightforward
way to obtain the smectic Hamiltonian is to note that in the
presence of unbound type | dislocatioWs, [Eq. (4.333]

plitude Uy .
We first note that these melting boundarigg(Uy) are
constrained by their limiting values

b2 Y
Th(0)= E%, (5.1
b2
Tr()= #\/M(Z,unt)\), (5.1b

whereT,(0) is the well-known result in the absence of an

contains both the longitudinal and transverse componentgyternal potentiaJ4—6]. In the opposite limit ofinfinite po-

and therefore, despite its appearance, it is no longer a CoRential strengthT,,(«) is given by Eq.(4.23, with B, (Uy
servative vector constrained to be a gradient of a single-,)~2,+\ and Byx(Ux—)~u. These results follow

valued function. This observation allows us to incorporatéfrom comparingH, 5 [Eq. (3.20], with H, [Eq. (2.4)], after

unbound type | dislocations into the Hamiltoni&h, [Eq.
(2.25)], by the replacement

Vu,—v,

(4.50

freezing out theu, degree of freedomu,=0) in Hy, as is
appropriate in thidJ x— < limit. Although in general there is
no universal relation betweeh,(0) andT(«), in a dilute
colloidal limit, relevant to the experiments of Wet al.[22],

with v an arbitrary 2D vector field. Under this substitution the two Lamecoefficients are equajt~\, and Egs.(5.1)

He, Eg.(2.25 transforms into

Ay

M A
HFSd=Jdzr[g(axuy+uy)2+§v§+ 5 (dyuy)?

@ 2_ 21, 7Y 2
+ Ny xdyUy + E[(&Xuy) —vyl+ E(ﬁxuy—vy) .

(4.5)

After performing a simple Gaussian integration over the two
independent components of we immediately obtain a
Hamiltonian for the floating smectic phase, which in the long
wavelength limit agrees in form and with the expressions for
the elastic constant8,, and B, obtained in Eqs(4.49
and(4.49.

V. SHAPE OF THE MELTING CURVE

A. Strong pinning limit and reentrant melting

reduce to

2
Th(0)=pg . (5.2a
_ 2
Th(=)=\3ug (5.2
~1.31%(0). (5.20

One might have expected that the melting temperature

would simply increase monotonically witd from T.,(0)
to T,,(«). However, as we will now show explicitly, the
uy,-mode thermal fluctuations, enhanced as the periodic po-

One of the most interesting observations in the colloidaltential is lowered from infinity, generically increase the

experiments by Weet al. [22], which in fact stimulated our

031503-
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curveT,,(Uk) must have a maximum in this limit, implying u, modes using the screened Coulomb potential to leading
reentrant melting for a band of temperatures as a function ofrder inkgT/Uy , the calculation in Appendix B givelgor
the potential amplitude. orientationp=(1,0)]

The origin of the reentrance effect can be understood on a

heursitic level as follows. Clearly, amall Uc, we expect { 9(ka)? 17
1+

3ka

kgT
p2U K

that the increase in the strength of the periodic potential supB,,(Uy)=~By (=)
presses thermal fluctuations ury, thereby lowering the en-

tropy of the liquid(or the smectigstate, and therefore mak-

ing freezing into a lattice free-energetically less costly. This (ka)? 23+ 104
naturally leads to arincreaseof T,,(Uyx) with Uy at low By (Uyx)=Byy(*)] 1+ 5 (1— -y
laser intensities. However, for potential strengths>kgT, 64m Ka
this entropic contribution to the free energy becomes unim-

portant. In this largeJ limit, the behavior ofT,,(Ug) is Ca s )
dominated by a different mechanism having to do with thevhere v=Voe “/kgT, By(*)=5vkgT«", and By(=)
reduction of the elastic constants with increasidg and =34 Loweringthe potential strengthlx alwaysincreases
decreasing temperature. To see this, note that the effectil@® shear modulus, whereas the behavior of the compres-
shear modulusB,,(Ux) which entersT,(Uy) [see Egs. sional modu_lus depends on the magnltudevo_find Ka.
(4.23 and (4.47], is determined by the screened CoulombWhen combined with Eq(4.23, these expressions imply
interactionV(r) = Voexp(— «r)/r between colloidal particles that the melting temperature increases with decreasig

in neighboring troughs. In order to find an effective shearfor ka=5.6 (in Ref.[22], ka~10),

modulus for theu, modes, one needs to integrate out the

massive modes corresponding to displacements perpendicu- . 5[ (ka)?—31] 13
lar to the troughs of the laser potential. This will be the route  Tirs-tsmlUk) = Tirs1sm| 1 642 ( * 3.
taken further below. Heuristically, one should obtain roughly m

], (5.5

kgT
p?Ug ,

(5.6

6472

the same result by assuming that the dominant effect comes KaT”
from the shear moduluB,, and simply averaging the poten- B ;FS'LS”‘] , (5.7)
tial over the massive, degrees of freedom, which yields pUg
ByX(UK)~(e*""n+1*’n|>uy, (5.3  thus implying reentrant melting for a band of temperatures as

a function of potential strength observed in experiments and
wherer , andr,,. , are positions of nearest neighbor colloidal illustrated in Figs. 2, 4, and 5. Clearly given the dependence

particles belonging to thath andn+1st Bragg planes, run- Of the Tes rsmon the elastic moduliEq. (4.47)], we expect
ning parallel to the laser potential troughs. This gives to low-the FS-FSm phase transition to display reentrance, although

est harmonic order in the fluctuations, quantitative predictions of the size of the reentrant band are
much more difficult.
Byu(Uk)~ (e "~ cluy(n+ )= uy(m]) In obtaining Eq.(5.7), we h_ave clea_rly ignored additional
renormalization of the effective elastic constants by phonon
~ o rkagrXud) nonlinearities and by bound dislocation pairs, which need to
be taken into account for a more precise estimate of the
~Byy(0)eeTVk, (5.4  phase boundary. Based on the general structure of Kosterlitz-

Thouless-like RG flows, the latter renormalizations generi-
with ¢ a dimensionless number of order 1. Such a thermatally reduce the elastic moduli, and therefore drive the melt-
enhancementf the effective shear moduli,(Ug), which  ing temperature down. Sinca, mode fluctuations, and
decreases as thermal fluctuationsup are suppressed by therefore the renormalizations that they induce, are sup-
increasingUy , is easy to understand: Even though, in thepressed by the increasing periodic potential, we expect that
presence ofi, fluctuations colloidal particles in neighboring T,(Uk) experiences a larger reduction at smaj} than at
troughs spend as much time closer together as further apatargeUy . The known values for the potential-free 2D melt-
because of the concave form of the interaction potential thing and the 2DXY model downward renormalization con-
enhancement of the effective shear modulus is larger fronstrain the extreméJ,=0 andUy¢—c ends of the melting
particles being closer together than the corresponding sugurve. Furthermore, since thermal downward renormaliza-
pression when they are further apart. tion of elastic constants is obviously enhanced with increas-

The above simple physical argument for reentrance i$ng temperature, we expect the suppression of the melting
supported by detailed microscopic lattice calculations intemperature due to these effects to be most pronounced near
which we computeboth the effective sheaB,,(Ux) and  the maximum inT(Uk). Clearly, such aUg-dependent
bulk B,,(Ux) moduli. To do this we start with a microscopic downward renormalization of the elastic constants will ge-
model with a screened repulsive Coulomb interacti(n) nerically tend to reduce the range of temperatures over which
=Vexp(«r)/r, where the screening lengifi ! is typically  there is laser-induced reentrant melting. However, these ef-
much smaller tham, andV, depends on the dielectric con- fects are small47], and we therefore expect reentrant melt-
stant,x and the sphere radifi22]. Upon integrating out the ing to persist even in their presence.
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B. Weak pinning: Universal shape of the melting curve This then predicts auniversal cuspfor the melting curve
at small potential strength Tm(Ug) in the limit Ux—0 in any phase in which >0,

In addition to a maximum displayed by the melting curve -, the periodic potential is relevant and the phase is locked,

as a function of laser intensity, we also find that the shape of"d Tm(Uk) given by
the melting temperature is universal in the limit of a vanish- 1

ing periodic potential strengthl . This can be seen most Tm(Ui) ~ Tm(O){1+ AclIn(ks T/ Ui) 1", (512
easily from the RG scaling theory applied to the potential-
free critical point. More specifically, consider the behavior of
the translational correlation lengt{t,Uyx) above the melt-
ing transition as a function dflx and the reduced tempera-
ture t=[T—-T,,(Ux=0)]/T,(Ux=0). The power of the
renormalization group transformation is that it allows us to
relate a difficult calculation very close to the transition,

as depicted in Figs. 2, 4, and 5. Htoating phases, such as
the FS and FSm phases, where the periodic potential is irrel-
evant(in the RG sense we expect the convergent perturba-
tion theory inUy to lead to a melting temperatufig,(Uk)

that instead grow$inearly with Uy .

where fluctuations are large and perturbation theory is diver- VI. RESPONSE OF THE TRANSLATION
gent, to a calculation outside of the critical region, where AND HEXATIC ORDER PARAMETER
perturbation theory is convergent. Applying this idea to the TO AN EXTERNAL POTENTIAL
computation of¢(t,Uy) we find

In this section we use a renormalization group scaling
analysis to determine the response of the translational order
parameterM ¢ =(px) and the bond orientational order pa-

_ _ rameter = (e ") to the amplitudeUyx of the external
=eME1LU e, (5.8 laser potential. In the absence of an external poteritlal,
=0, there are only algebraic peaks in the static structure
where we have chosen the RG rescaling parangtesuch  function of the crystalline phase, and the translational order
that the rescaled reduced temperatt(ie, ), given by the parameteM=(py) vanishes like
RG flow equations of Halperin and Nels§8], is of order

E(t,Uy) =b, £(t(b,),Uxbl), (5.89

unity: Mg ~L~ 7”20 (6.1
t(by)=1. (5.9 as the system size— o, where

Ak=2— n/2 is the renormalization group eigenvalue of the — kT 3u+A )

1D periodic potential . At the primary potential-free fixed = w(2pu+N) (6.2

point with U, =0, we recover the well-knowfb] exponen-
tial growth of the correlation lengt(t,Ux=0), with the s the critical exponent of the potential-free cd&d. For
exponentv given by small values of the external potentld) we can use standard
crossover scaling analysis to determine how the translational
v~0.36963, (5.10  order parameter depends on the amplitude of the laser poten-
tial. We start from the scaling behavior of the free energy
where an overbar denotes critical exponents at this fixedensity under a renormalization group transformation
point.
The primary critical behavior is unstable for arbitrarily f(Ug,T)=e 2f[eMUy,T(1)], (6.3
smallUy . Hence, sufficiently close to the melting tempera-
tureT,(0), theperiodic potential always becomes important. where A\ is the renormalization group eigenvalue for the
This is the case even for the melting of the FS phase, whergeriodic potential, and (l) is the renormalized temperature
it leads to a marginal crossover from a fixed line of isotropicwhich characterizes the crystalline phase. Since in the free
rotationally invariant elasticity to the fixed line characteriz- energy density the laser potentia) couples linearly tpg,
ing elasticity given by Eq(2.25, where the rotational sym- we have
metry isexplicitly broken byU . There, despite the fact that

the periodic potential is irrelevant for the translational order d

parameter, it is always important for the orientational de- Mg=— —&UKf(UK,T), (6.4)
grees of freedom, sincesee Sec. Il Cit explicitly breaks

orientational symmetry. and dimensional analysis tells us that the exponent of the

In locked phases it is clear, from Ed5.8b), that for a

correlation functio N px(0))~r~ 7k is related tavk b
given smallUy, the effects of this weak periodic potential ek ek(0) KDY

will be felt at T,,(Ux)>T(0), such that theJ  -dependent Ae=2—37¢, (6.5
argument on the right hand side of E§.8b is large, i.e.,
grows beyond ordefp,: a result consistent with standard perturbative calculation of
. Ak . Hence we obtain the following scaling relation for the
U~kgTme S /tm, (5.1) translational order parameter
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Tt a)

FIG. 17. Triangular lattice with a lattice constamsubject to a b)
periodic potentiallmaxima indicated by dashed linefor a dual- d
primary orientationp=(1,1) with pd=a’, wherea’ =a/2 is the

Bragg plane spacing, and the commensurability ratjp=isl. Also Modulated Liquid
shown is the low energy dislocation, with the Burgers vedior
parallel to the corrugation of the potential.
B B LFS
My (Ug,T)=e W2mIm, [e 2y, T(1)], (6.6
where we expecT(l) to approach a finite value ds—. Uk

Upon choosind=1, , such thae®~ «2xy, = ua? i.e., is
comparable to the elastic energy for deformation at the lat
tice cutoffa, we obtain

FIG. 18. () Schematicp=1 phase diagram as a function of
potential strengthJ and relative orientation between the laser po-
tential and the 2D solid; a change in orientation from (1,0) to (1,1)
is generated by keeping the particle dengand hence the mean
particle spacinga) fixed, and varying the distanad between the
minima of the external potentialb) Schematigp=1 phase diagram
for lattice spacingl vs potential strengtkl¢ at fixed temperaturé
and fixed colloidal density; incommensurability effects are disre-
garded.

M(U, T)~ Uy 7 /=m0, (6.7)

For 7x>2, M vanishes linearly withJ, , with a singular
correction. In contrastMi should always vanislhinearly
with Uy in the liquid and hexati¢11,12 phases of the un-
perturbed colloid.

The laser potential will also induce long-range bond ori- . s o2 2
entational order inyg=(e® %"} [48]. Along similar lines as In general, the magnitude;=a“(n1+n3+n.n,) of the
above, one can show that the bond order paramjteran- lowest energy Burgers vector and hence the melting tem-
ishes linearly withU, in the liquid, vanishes like a power of PeratureTocbZ depends strongly on the relative orientation

Uy in the hexatic phase between the 2D solid and the laser potential, e.g.,rfor
- =1 andn;=0, 1, 2, and 3 one finds¥/a®=1, 3, 7, and 13.
he~|Uy|676/(4 7 70), (6.8) In particular, if one keeps the mean particle spa@n@e.,

_ - _ the density and the potential strength fixed and reduces the
where 7 is the exponent describing the algebraic decay ofspacingd between the laser troughy, e.g., varying the
bond order, and approaches a nonzero constadias0 in  angle between the two interfering laser beards-d/+/3

the solid phas¢26]. such that one goes from preferred primary lattice orientation
[AA=(1,0)] to preferred secondary primary lattice orienta-
VII. DISCUSSION AND EXPERIMENTAL IMPLICATIONS tion [fig=(1,1)] the melting temperature should increase by

a factor of 3[see the vertical arrow in Fig. 1&]. This ap-
pears to be consistent with preliminary data of Bechinger
et al.[49]. They find that for exactly such a change in trough
One of the interesting predictions of our work is that thespacing the onset of light induced freezingfiagd tempera-
LFS-ML, LFS-LSm, and FS-FSm phase transitions are alture is shifted to smaller laser intensities also by roughly a
mediated by the unbinding of type | dislocations with Bur- factor of 3[see the horizontal arrow in Fig. (8].
gers vectors parallel to the troughs of the external potential, More detailed experimental studiesTf(U) for various
b=DbzX. Consequently, depending on the choice of relativecommensurate orientations and trough spacings would
orientation, the periodic potential can be used to supress theearly be desirable in order to systemmatically test our pre-
unbinding of a set of dislocations that would otherwise un-dictions for the orientation dependence of the melting tran-
bind in a “substrate”-free experiments. For example, in thesition temperature for the LIF phase. In performing such
dual-primary orientation shown in Fig. 17, aik fundamen-  studies one must keep in mind considerable irreversibility
tal Burgers vectors are confined by a linear potential aneffects that are expected to plague “zero-laser-field” cooled
therefore cannot unbind entropically. It is therefore the un-experiments. In order to avoid dealing with long equilibra-
binding of non-fundamental dislocations with Burgers vectortion times, one would need to warm up into the liquid state,
of charge/3a, illustrated in Fig. 17, that will control the change the laser potential periadand only then “field
melting transition. cool” back into the solid.

A. Melting temperatures and critical commensurability
ratios in the dilute limit
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Since trough spacing (controlled by the angle between _ 3 1
the interfering laser beamand laser intensity appear to be p‘C’": \[E# (7.9
convenient experimentally tunable parameters, it is valuable ni+nz+nin,

to derive the shape of the melting curve in tihdJ plane

(for a given temperature and a fixed density of colloidal par- _

ticles). However, since an arbitrary value dfill in general ~ Note that only for the primaryg®'=3/3/2~3.7) and dual-
not be commensurate with the spacing between a particulggrimary (pg": \J3/2~1.2) orientations is this critical value
fixed set of Bragg planes, a detailed study of incommensugrger than 1. For any other orientatipg is less than 1 and
rate potentials would need to be done in order to fully un-hence we expect that there will always be an intervening
derstand the behavior as a function of trough spading/e fn41ing solid phase. A configuration witi=(2,1) (also see
hope to discuss some of the ensuing physics in a forthcomlngig_ 10, and hence,= (3/7)\3/2~0.5 is likely to be within

publication[27]. However, for the following we would like . . .
. . the range of parameters accessible to experiments with col-
to restrict ourselves to values dfwhich are commensurate. loidal particles

Hence, strictly speaking, our results will not be valid for a E h . heni ition f locked
continuous set of layer spacings but only for a discrete com- orp=pe t, €re IS a rougnening trangltlon rom a locke
mensurate subset of values. With this precaution in mind wél©ating solid into a uniaxially anisotropic floating solid de-
expect the melting curvéfor a given temperature and par- S¢fibed byHg [Eq. (2.25], which subsequently melty

ticle density in thed-Uy plane to have the shape illustrated Unbinding of type I dislocationsnto either a modulated lig-

in Fig. 18b). We note that in the LIF regime the critical uid phase or a floating smectic phase. Since the melting and
potential strength for melting decreases with decreasing dighe roughening transition for a locked smectic phase are
tance between the laser fringes, whereas in the LIM regim@iven by Tysy=(1/87)Ba? and Tpsq= (2/)Bd?, respec-

the critical potential strength increases as the interferenctvely, whereB= B,,B,, andais the smectic layer spacing,
fringes become narrower. there exists ainiversalcommensurability ratigp.=4 [42]

Let us now specialize to the dilute limika>1, relevant  above which a floating smectic phase intervenes between a
to the experiments of Wegt al. [22]. Then the two Lame |ocked smectic phase or a floating solid phase and the modu-
coefficients(characterizing the continuum elastic theory of |5te liquid phase. This universal valpg=4 should be con-
the hexagonal crystal in the absence of a laser poténtiajasieq with the nonuniversal critical commensurability ratio
become equalu~\, and the melting temperature for the , "¢, the existence of the floating solid phase, which de-

LFS phase reduces to pends on the relative magnitude of the elastic constants and

b2 strongly on the relative orientation between the colloidal lat-
Tom:,u6—”, (7.1)  tice and the 1D periodic potential. Current experiments find
& it difficult to access large commensurability ratips We
hope that our theoretical results will inspire experimentalists
bﬁ o to overcome present obstacles and map out the rich phase
m= \/§M§%1-3Tm (7.2)  diagram shown in Fig. 5.

in the limit of zero and infinite potentials, respectively. For B. Phase diagrams as a function of the Debye screening length
small values of the commensurability ratip<p., the LFS

phase melts into a modulated liquid phase or a locked smec- - .
tic phase. Ifp>p,, a floating solid phase with two soft ?)resence of a 1D periodic external potential explored the

phonon modes can intervene between the LFS phase anophase diagram in the parameter spaceJqifksT and «a

modulated liquid or floating smectic phase. As discussed iﬁAﬁth particle density and temperature fie®,20]. Although

Sec. IV A, the transition from the LFS into the intermediate "¢ mlght question whether .SUCh _S|mulat|ons are in e_qumb
S . . : rium with respect to dislocation climfor even glide, it is
FS phase is in a roughening universality class where the laser o :
; . . S important to tabulate the predictions of our defect-mediated
potential becomes irrelevant. In the dilute lintaind neglect- . S .
! o : . . melting theory in this parameter space in order to be able to
ing effects of the periodic potential on the elastic coeffi-

cienty the corresponding critical temperature is aloroXi_compare with the results of these S|mulqt|ons. In addition, it
mately also seems to be more feasable experimentally to map out

the phase diagram as a function of potential strength and
particle density.
i 5 Adapting our results from Sec. V, we find the following
Tpszgﬂd ' (7.3 behavior. Since the melting temperature is proportional to
the elastic moduli, which in turn are proportional to the po-
tential strength, foxwa>1 we expecfl,, to display the fol-
whered=a’/p with a'=/3a/(2 \/n12+ n22+ n.n,) the dis- lowing dependence on the screening lenih- («a)%e™ *2.
tance between the Bragg planes parallel to the troughs of thés an immediate consequence one obtdjims the dilute
laser potential. Upon combining E{.3) with Eq.(7.1), the limit) the following implicit equatiorfalso see Eqg7.1) and
critical commensurability ratio reads (7.2]1:

Recent Monte Carlo simulation studies of melting in the
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Uy

2 4 6 o 8 10 12 14

m? FIG. 20. Schematip=1 phase diagram as a function of poten-
tial strengthUyx and inverse Debye screening length Solid and
dashed curves represent the melting curves for valueslafger or
smaller, respectively, than the critical value «f;; a~5.6.

FIG. 19. Difference betweer,a at infinite and zero potential
strength as a function 0%2@. The vertical dashed line gives the
asymptotic value 2 In 180.52 for very IargeKOma.

strength, as shown by the dashed line in Fig. 2oc24a and
k@ are both larger than the critical value 5.6, we expect
>>O. (7.9 reentrant behavior such that with increasing potential

Kx
(ki—kO)a~2 In( 13—
strength «na) ! first decreases and reaches a minimum

Km

minay —1 o, \—1 . 1
In particular this implies that the difference in the critical (<m @) <(xna)” " before it approaches«fa)”" as an

values of the inverse screening length at infinite and zerdverse power olJy according to Eq(7.6) (see Fig. 20
potential strengthg”, and «,, is positive. In the limit<®a This reentrant behavior is consistent with results from ex-

>1, Eq. (7.5 reduces to &”— x%)a~2In1.3~0.52. The periments of the Konstanz groJR2,49 (see the dashed

: : : arrow in Fig. 20, which describes a typical experimental
full solution of Eq.(7.5), together with the asymptotic result, X o ' L .
is shown in Fig.ql(g.s\)Ne %nd Eq. 7.5 to beycopnsistent Withpaﬂ). It is also similar to what one finds in simulatioffs9]

experimental results49]. It would be interesting to test ex- at small values of the potential strength. However, there are

erimentally the functional dependence i, on 0 (Fi significant differences. First of all, the type of transition is
29) predictgd here P Km (F19- very different. Whereas we discuss a continuous dislocation

Th its of Monte Carlo simulati o di mediated melting transition, simulations appear to find a
e results ol vionte Larlo simuiations appearto diSagreg, o, rqer transition. Second, as discussed above, the simu-
with experiments, and with our predictions from the

. ) 0 . . .
: ) ) . <
dislocation-mediated melting theory when compared forlatlons showk, < ki, Which is opposite to what our theory

. ; predicts. In more recent simulatiofi20] x,a is found to
Iilrgoe Vtil;essirr:)t]jIzt:t]ie(z)nzoiizg?tleztr;ng:[ﬁgr;fwfvisq\Lﬁfefﬁcei increase monotonically with potential strength with no sign
Km»

. . ) for reentrance. This is opposite to what was found in the
opposite. More recent simulations from the same grf@@ earlier simulations by the same grof9].

seem to refute these eoarlier results and find, in agreement | summary, we find that our theoretical results are con-
with our theory, «p— kp>0. Their numerical value for gjstent with recent experiments and raise strong doubts on
(K~ km)a~1.32 is, however, more than two times larger the validity of the Monte Carlo results to date on melting in
than our asymptotic prediction of 0.52. However, because 1D periodic potential. This latter failure of simulations is
Eq. (7.5 neglects finite renormalization of elastic constantsnot completely surprising given difficulties of numerical
by dislocation dipoles and nonlinear elastic effects, our premethods on even larger systems to resolved the nature of 2D
diction is an estimate, only accurate upto unknown factors ofnelting evenwithoutan external potentigl21].

order 1.

Next we discuss reentrance in thé /kgT-«xna phase C. Static structure factor and pair correlation function

diagram. Upon rewriting Eq5.7), we find . . . .
g P 9 EdS.7) The quantity that is most directly observed in many ex-

periments on colloidal systems and related simulations is the

$= a(K—ma), (7.6 pair correlation function, defined by
keT  T/T)(kma)—1
. V oo
with g(r)=@i2j (olr—(ri—rpl), (7.9
2
a(Kma):S[(Kma) —31] ( 1+ 13 _ (7.7) where the double sum is ovét particles but excludes the
4 3xma diagonal terms wherie=j. It is related to the static structure
factor by
Hence if k%a and «;;a are both smaller than the critical 5
value 5.6 for the existence of reentrance, we expegaj * ()= Ef d—qeiq'rS( ) (7.9
to be a monotonically decreasing function of the potential 9= NJ 27 9 '
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Neglecting the smooth part of the structure factor and taking 4
into account only the center column of Bragg peaks and the

two neighboring columns of quasi-Bragg peaks with 3r
”GA,X(T;W) =1/4 andnGB‘X(Tr;) =1, respectively, for the pair

correlation function one finds 27

gy)-1

g(r)—1=2 CGlcos{Gl~ r)+r"’GA,xE CGAcos(GA~ r)
Gy Ga

+17 76,2, Cg cOYGg-T), (7.10 1
Gp

where 7¢g .y are the exponents characteristic for the LFS

phase. Note also that according to Ef13 these exponents
only depend on thex component of the reciprocal lattice
vectorG,. The amplitude£G are proportional to the am-

plitudes of the correspondlng Bragg peeﬁ(&(ZTr/a )&,
and quasi-Bragg peakg, andGg, with G, X—G =2mla
andGg ,=2G. [see Egs(3.323 and(3.33b].

Forr||%, i.e., looking parallel to the minima of the troughs
the sum over the Bragg peaks yields a constant. This simpl
reflects the effect of the laser potential to induce a periodic
modulation of the colloidal particle density with a higher rectly fit the experimental data by a single power law. For
density in the minima of the troughs. Note that this trivially lustration, Fig. 21 showg(x) 1 for a special case, where
implies that the pair correlation function doest approach = €ONStE0, 9a=gs=1, 7g, =z, and 7e, =1, and all
unity asx— o if g(x) is normalized with respect to the mean length are measured in unitsafDue to the superposition of
density. Since the amplitudes for the quasi-Bragg peaks déhe two harmonics with different power law amplitudes the
cay as a power law in the strength of the laser potential withiminima are much broader than the maxima of the structure
an exponent proportional tﬁ;y a reasonable approximation factor, a feature which appears to be present in the data of

FIG. 22. Algebraic part of the static structure factor fet ¥,
e., looking perpendicular to the troughs of the laser potential. Un-
like Fig. 21, algebraically decaying oscillations are superimposed
on a periodic contributiorinot shown which does not decay.

creasing potential strength. This prediction should be acces-

sible to experimental verification. Note that the dependence

of the amplitudeg, on the potential strength may lead to
k-dependent effective exponents when one tries to incor-

for the pair correlation function reads Ref. [22]; ) ) ) o
Forr|y, i.e., looking perpendicular to the minima of the
g(X)—1=const- g,cog GIX) X~ "eax+ ggCOg 2GIX)X ™ "Cex. troughs, we obtain,
(7.11
The relative magnitude of the amplitudgg andgg depends ~ 9(y)—1=constcog 2Gy) + gAcoL Gyy)y ™ "Saxt gpy ™ "Cex
on the strength of the laser potential. Wherggss indepen- (7.12

dent of Uk (note that the leading quasi Bragg-peak contrib-

uting to gg has Gg,=0), ga vanishes as a nontrivial

T-dependent power law i)y for Uy /ua’<1 [see Eq. With G)=2m/\/3a. Hence on top of the periodic density

(3.32D], increasing the weight of the™ 7c.. term with in-  modulation due to the laser potential we again have an alge-
braic decay from the closest Bragg peaks. For illustration,

3 : : ‘ : Fig. 22 shows the algebraic part of the static structure factor

f(x) =y~ Ycos(2ry/\/3)+y !, where we have again chosen

the amplitudes to be equal and thcexponents equal to their

values at the melting temperaturgg , i and N6, =1 If

one would try to fit the envelope of thIS functlon in the
regime shown in the graph using a single power law, one
would find an exponent of 1/2. Hence caution must be exer-
cised in the analysis of the experimental data, and it is es-
sential to take into account both leading and subleading
quasi-Bragg peaks.

g(x)-1

-1

-3 . . . .
0 2 4 6 8 10
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is anupper boundor the exact free energy corresponding
to the HamiltoniarH of interest, and wheregl, is any other
(the so called variationaHamiltonian,F, is the correspond-
ing free energy, and the subscripton the thermal average

In this appendix we study the freezing transition of theindicates that a Boltzmann weight with Hamiltoni&h, is
modulated liquid in the limit of a strong periodic potential. In used. The advantage of the variational principle can be taken
such limit the colloidal particles are tightly confined to the if the arbitrary variational HamiltoniarH, is judiciously
troughs of the 1D periodic potential, and our system reduceshosen to be simple enough, so that thermal averages can be
to a weakly coupled array of 1D colloidal liquids. The low calculated, but at the same time general enough so as to be
energy degrees of freedom of the resulting system are theasble approximately capture the physics of the full Hamil-
well characterized by a scalar fielgy(x) describing particle  tonianH.
displacements along theth trough and an effective Hamil- Since, unfortunately, our abilities to compute functional
tonian integrals do not extend beyond Gaussians, we choose a qua-
dratic form forH,,

Hvzzn: fdx

where for simplicity of notation we have defined rescaledwith B, and B, as the effective variational parameters, re-
phonon fieldg,(x) and elastic couplingB andg related to  spectively, related to the effective long wavelength bulk and

APPENDIX A: VARIATIONAL THEORY
OF THE 2D MELTING TRANSITION
IN THE PRESENCE OF A 1D PERIODIC POTENTIAL

1 [de¢,\?
H=; JdX[EB( d(i) =g o ¢4 1(X) — dn(X) ],
(A1)

)2 By 2
dx +7(¢n+l_¢n) ’ (AS)

Bx(d¢n
2

those defined in Sec. | through shear moduli, the latter given by
2 2m\?
bn(X) = —=Un(X), (A2a) n=Byd| =] - (AB)
a |2 Simple Gaussian averages then lead to the variational free
B=Kd(z) : (A2b)  energy densityf (B, ,B,)=F(B,,B,)/LiNy,

2 ?:J HE(B—B )k2— B, (1— cosk d)}G (K)
. (A20) el |2 X By y=2 P

g=pd

2md

In Sec. | we used simple qualitative arguments to estimate  — %kBT log Gu(k)] -qg exp{ - j (1—coskyd)Gv(k)},

the colloidal freezing transition temperature. Here we would k

like to treat this model quantitatively and in more detail. (A7)

Unfortunately, however, as can be seen from a standard

renormalization group analysisjeak coupling g is always whereL, andN,(=L,/d) are the length and the number of

irrelevant at long scales, with the effective coupling¢,) laser potential trough@.e., the 2D dimensions of our colloi-

vanishing at length scalg, as dal system, respectively, an&, (k) is the Fourier transform
of the intratrough displacement correlation function given by

éx

g9(é)=9 E

g~ onstkaT/B)é (A3) G,(k)=kgT[B,kZ+2B,(1—cosk,d)] ™.  (A8)

Thermal fluctuations, which are especially strong in one di- To find the upper bound of the free energy densityve
mension, are responsible for this effective decoupling of thenow minimizeT(BX,By) over the variational parameteBs,
colloidal system into effectively independent one-andB,. A conceptually simple but tedious calculation gives
dimensional liquids. This precludes a description of the

freezing transition in weakg) coupling starting from this Bx=B, (A93)
model. There are two alternatives: One is to study of the y
melting transition from a complementary strong coupling, B,(B,g)=ge *sT/[7d(E,B) a1, (A9b)
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l,l, Ay, Auy,,
o v > 3 \ r /
1 2 3 1

’ 1+1

S,

FIG. 24. Sketch of two rows of a triangular lattice of colloidal
quuid 9. crystal 0] particles in a trough potential illustrating two contributions to the
effective potential energy. The sum over the lattice sites is done by
FIG. 23. Shear modulug as a function of the intertrough cou- summing along the valleys; there is one intravalley nearest neighbor
pling g (at fixed temperatuje showing a freezing transition be- (wiggly line) and two intervalley nearest neighbors one in the for-
tweenu=0 2D liquid and au>0 2D crystal, and a jump discon- ward direction Au) and one in the backward directioAq) (solid
tinuity at g, in the shear modulus. lines).

Equation (A9b), which determines the behavior &, , where due to the short range of the potential we can safely
and therefore the effective shear modulusas a function of ~ restrict summation to nearest neighbdis|’). The distance
temperature and intertrough coupliggillustrated in Fig. 23, between the colloidal particles numbereand!’ can(for a
is the main result of the variational calculation. A simple perfect lattice be decomposed into a distance between the
graphical analysis of EqA9b) predicts equilibrium positiong| and the displacement vectaus:

By(g)zo for g<gc, (Aloa) R||r=r|—r|,+u|—u|y5r”,+u||y. (BZ)

T/ (B2 In the following we restrict ourselves to the primary configu-
By(g)~ge ™9™ for g>g.,  (ALOb)  rations, and write the potential energy as sums over Bragg
“planes” (i.e., rows of particles ind=2) indexed by an

where the critical value of the coupligwhich separates the jntegerr and particles within these rows indexed lpy
two solutions forB, is given by

1
kgTe\?1 d=Voay
gc=( 2877) = (A11) T L@t ou)?+ sh?)v2

o X exp{— k[ (a+ dup)?+ shf M2
Combining this with Eq(A6), we conclude that the tran-
sition between the two solutions in EGA10) represents the 1
freezing of a zero shear modulug € 0) 2D liquid into a + > 2172
finite shear modulusg>0) 2D solid. In terms of the shear [(a/2+ Au)=+(d+Ah)7]
modulusu and the bulk modulu¥, defined by Eqs(A2c), % _ 2 AuD24 (dt Ah)2TY
the corresponding melting transition temperature is given by exp - «l(af u)”+(d DT

1
a2 +
keTm=5 VK, (A12) [(a/2+AU)%+ (d+Ah))2]22
a value that, up to factors of order 1, is consistent with the X exp|— [ (a/2+ AU,)2+(d+Ah|)2]1/2} . (B3

asymptotically exact prediction of our strong coupli@das-

tic mode) analysis given in the main text. o . .
where the relative intravalley and intervalley displacement

fields are defined as followsee Fig. 24
APPENDIX B: EFFECTIVE ELASTIC CONSTANTS

FOR SCREENED REPULSIVE COULOMB POTENTIAL SUI= Uy (X +a,Y)) — Uy(X),Y)), (B4)

To calculate the effective elastic constants in the limit of _
large through potential, we start from a model with a pair oM =y(Xi 3.y = ty(X Y1), B5)
potential given by a screened repulsive Coulomb potentiahnd
V(r)=V,aexp(«r)/r, where the screening lengtk ! is
typically much shorter than the mean particle spa@nghe Au=u,(x+al2, y +d) = ux(X;,y)), (B6)
total potential energy is then given by o
Aup= —u (X —al2, y) + uy(x,y), (B7)
(b:%VOaZ 1 e_K‘RII", (B_‘]_) Ah|=Uy(X|+a/2, y|+d)_uy(X|,y|).
a1y IR (B8)
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In the strong pinning limit the laser potentidl, can be
expanded in powers of the phonon fields in theirection,

UK 2
Mg 3 od

8m? Uy
~ 2——
P73 kBTE.:

h\?

a

(B9)

e ]

where we have usedd=/3a/2. In the following we shall

(in order to simplify notationmeasure all lengths in units of

the mean lattice spacing.

We proceed as followdi) first we expand all terms in the
total potential energyp to quadratic order in the out-of val-
ley displacement fieldji) then we integrate out the massive

out-of-valley modes, andii) finally we take the continuum
limit. Note, that it is only stegi) which explicitly depends

on the particular form of the pair potential. For simplicity,

we will limit our derivation to the leading order Ny /Uy
andkgT/Ug .
Step(i) gives
BPLuUh]=B(P1+Dy+ D), (B10)

with
®[uh]=v>, {—3(k+1)Sh2+ 5 (k2+2k+2)uf
|

+ B1(k) 8hZéu,+ 8,( k) 8h? Su?l, (B11)

q>2[u,h]=vZ {3(3k%+5k+5)AhZ+ (k2 — k—1)Au?

+ay( k) AN AU+ By(k)Ah?AL,
+ (k) Ah AU+ 8,( k) AhZAU?Y, (B12)

and ®[u,h] obtained from®d,[u,h] by the replacement
Au,—Au, . Here we have also introduced

Bi(K)=3(k*+3k+3), (B13)
81(k)=—32(k3+5k°+ 12« +12) (B14)
and
as(K)= \/Tg(K2+3K+3), (B15)
Bo(Kk)=— %5(3K3+ 14x°+ 33k + 33), (B16)
3
Ya(K)=— £(K3+2K2+3K+3), (B17)

16

PHYSICAL REVIEW E63 031503

81(Kk)= & (3xk*+ 14k3+55k%+ 123« +123). (B19
The dimensionless ratio

Vo

UTC ke

(B19

measures the strength of the pair potential relative to a typi-
cal thermal energy. Next we integrate out the massive pho-
non fieldsh, with a Boltzmann weight given by the external
potentialHy ,

exp[—ﬂHeﬁ]ZJ [dh]ex;{—w}l‘, hf—/acb[u,h]},
(B20)
where [[dh] denotes an integration over tkig}. We find

v, v v? )
E(K +2K+2)+w51(K)_Wa’2(K)

BHef‘f:ZI { 5UI2

+(AuZ+AT?)

S (2= k—1) =5
8(K k—1) w 2(K)

] . (B2))

In the continuum limit(and reindroducing the sca, we
have

suf—a?(dyuy)?, (B22)
9 o ) 1 ) 3 )
(Auf+AuU))—a E(axux) +§(<9yux) , (B23)
1
2 -5 f d2x. (B24)
I a
We finally find our desired result, namely,
1 ) 5 )
HEf‘fZE d I'[,U,eﬁ(&yux) +Keff((9xux) ]: (825)
with
<14 9(ka)? 17\ kgT 526
Meff™ Meff) 11 a2 3kal 20, | (B26)
Kok 14 (Ka)Z(l 23+104)\ kgT @27
eff eff 64/772 3Ka p2UK ]
where
pa= 5 (ka)?— ka—1)Voe *?, (B29)
KZ=3(9(ka)?+ 15ka+ 15)Vye 2. (B29)
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